Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres

2019 ◽  
Vol 53 (28-30) ◽  
pp. 3979-3991 ◽  
Author(s):  
Karolina Mazur ◽  
Stanislaw Kuciel ◽  
Kamila Salasinska

This paper describes the hybridization of basalt and carbon fibres in polyamide 6 by injection moulding method and the analyses of the mechanical, morphological, fire, and smoke properties of the obtained materials. The content of basalt/carbon fibres in hybrid composites amounted to 5/5 wt%, 7/7 wt%, and 10/10 wt%. The addition of fibres resulted in an increase in mechanical properties of the examined materials, was reflected by the threefold increase of Young modulus for the composites containing 10/10 wt% of fibres. To investigate the aging, the samples were stored in distilled water for 1, 7, 14, 100, and 210 days. After 210 days, a significant decrease in mechanical properties was observed. Interestingly, the addition of fibres caused a 50% reduction in stiffness, whereas, in the case of neat polyamide 6, the decrease was about 78%. Additionally, the addition of fibres reduced water sorption. With the increasing fibre load, the decrease in the maximum average rate of heat emission was observed. In the case of composites containing 10 wt% of basalt fibres and 10 wt% of carbon fibres, it amounted to 207 kW/m2 and was lower by approx. 37% in comparison to the unmodified polymer.

2014 ◽  
Vol 980 ◽  
pp. 152-156
Author(s):  
Amar Mesbah ◽  
Krimo Azouaoui ◽  
Sid Ali Kaoua ◽  
Salah Boutaleb

In order to address the problem of stiffness and mechanical properties, a micromechanical approach for the prediction of the overall modulus of nanocomposites (Nylon-6/nanoclay/silica) using a self-consistent scheme based on the double-inclusion model and taking into account the different morphologies exfoliated or intercalated of the nanoparticles. Self-consistent approach that is used in our calculations was explained after reviewing the inclusion of Eshelby, in particular the double inclusion and while considering also the effect of constrained region, modeled as an interphase around reinforcements. Namely, polyamide 6 reinforced with clay platelets and silica particles. Several parameters on the Young's modulus of the composite were studied to see the effect of having mixed two or three reinforcements in polymer matrix. Finally, we demonstrated the process undertaken for the calculation of elastic constants of the material studied.


Author(s):  
Getahun Aklilu ◽  
Sarp Adali ◽  
Glen Bright

Abstract. Fibre Reinforced Plastic (FRP) materials are widely used in several key engineering applications such as ships, aircraft, wind turbine blades, helicopter blade, automobiles, and other transportation vehicles because of their mechanical properties and tailoring capabilities.Carbon and glass fibres are the most popular fibre reinforcements used for composite components. In the present study, two different stacking sequences, (0 degrees) and (0/90 degrees), are selected to study effect of fibre hybridization on flexural performance using three-point bending tests. Materials used are E-glass and T-300 carbon fibres in an epoxy matrix and the laminates were produced by resin transfer moulding methods. Fracture surfaces of composite laminates were examined using a scanning electron microscope. The results showed that the flexural strength, modulus and strain at failure of unidirectional and bidirectional composite laminates were strongly influenced by stacking sequences, fibre orientation and the hybrid ratio of the fibres. A higher flexural modulus was achieved when carbon fibres were placed on the compressive side. Hybrid specimens showed higher flexural strength and modulus by 21.08% and 145.39%, respectively, compared to the pure glass fibre reinforced laminates. On the other hand, flexural strength and modulus of hybrid specimen were less by 6.50% and 8.20%, respectively, as compared to carbon fibre reinforced specimens. Stacking sequences and hybrid ratio of glass/carbon fibre reinforced specimens were investigated with a view towards improving the mechanical properties of hybrid composites.


2017 ◽  
Vol 31 (4) ◽  
pp. 553-571 ◽  
Author(s):  
József Szakács ◽  
László Mészáros

In this study, a new type of carbon nanotube (CNT) and micro fiber (carbon or basalt)-reinforced polyamide 6 hybrid composites were prepared and investigated. Hybrid composites were produced by melt compounding, and specimens were injection molded. Thanks to the proper dispersion of CNT, a remarkable increment in tensile properties was exhibited. The scanning electron microscopy of the fracture surfaces of the tensile-tested materials revealed that during composite preparation the presence of the fibers in the melt facilitated a better dispersion of the CNT, which explains the enhancement in the tensile properties. The deformation components of the materials were also examined at different load levels. The presence of carbon nanotubes decreased residual deformation at every applied load level. Protruding fiber length investigation revealed that improved mechanical properties are not related to fiber-matrix adhesion but to the reinforcing and stress homogenization effect of nanotubes in the matrix.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 731
Author(s):  
Xiaoye Cong ◽  
Pooria Khalili ◽  
Chenkai Zhu ◽  
Saihua Li ◽  
Jingjing Li ◽  
...  

Hybrid composites composed of bio-based thin-ply carbon fibre prepreg and flame-retardant mats (E20MI) have been produced to investigate the effects of laminate design on their fire protection performance and mechanical properties. These flame-retardant mats rely primarily on expandable graphite, mineral wool and glass fibre to generate a thermal barrier that releases incombustible gasses and protects the underlying material. A flame retardant (FR) mat is incorporated into the carbon fibre bio-based polymeric laminate and the relationship between the fire protection properties and mechanical properties is investigated. Hybrid composite laminates containing FR mats either at the exterior surfaces or embedded 2-plies deep have been tested by the limited oxygen index (LOI), vertical burning test and cone calorimetry. The addition of the surface or embedded E20MI flame retardant mats resulted in an improvement from a base line of 33.1% to 47.5% and 45.8%, respectively. All laminates passed the vertical burning test standard of FAR 25.853. Cone calorimeter data revealed an increase in the time to ignition (TTI) for the hybrid composites containing the FR mat, while the peak of heat release rate (PHRR) and total heat release (TTR) were greatly reduced. Furthermore, the maximum average rate of heat emission (MARHE) values indicated that both composites with flame retardant mats had achieved the requirements of EN 45545-2. However, the tensile strengths of laminates with surface or embedded flame-retardant mats were reduced from 1215.94 MPa to 885.92 MPa and 975.48 MPa, respectively. Similarly, the bending strength was reduced from 836.41 MPa to 767.03 MPa and 811.36 MPa, respectively.


2019 ◽  
pp. 152808371987884 ◽  
Author(s):  
Suhad D Salman

Owing to the high cost of carbon fibres and a necessity for finding alternatives that environmentally friendly, a portion of carbon fibres was substituted by woven jute fibre, with various stacking sequences for military applications. Hot press was used to fabricate the composite and hybrid samples of jute/carbon fibres reinforced polyvinyl butyral film using as a layer. Dynamic mechanical experiments (DMA) were conducted with more focus on the stacking sequences of jute and carbon, with increasing temperature. Results showed that the carbon/jute/carbon (H1) hybrid has the highest storage modulus and loss modulus values compared with other hybrids. Significantly, placing woven jute fibre at the outer layers and carbon fibres at the inner layers provided lower dynamic mechanical properties than that of the hybrids with placing jute at the inner layers. Besides, the damping factor shifts to higher temperatures by hybridization of jute fibres compared with carbon composite. Additionally, glass transition temperature (Tg) obtained from the damping curve and loss modulus exhibits a temperature between 129 and 180℃ for all composites, in withstanding dynamic loads. The dynamic mechanical properties were observed to be decreased with increasing temperature for all laminated composites. From results, it could be deduced that it is possible to reduce amount of carbon fibres in different composites industries with woven jute, thus providing less both cost and harmful environment.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

Sign in / Sign up

Export Citation Format

Share Document