scholarly journals Purinergic Signaling Modulates Survival/Proliferation of Human Dental Pulp Stem Cells

2018 ◽  
Vol 98 (2) ◽  
pp. 242-249 ◽  
Author(s):  
S. Zhang ◽  
D. Ye ◽  
L. Ma ◽  
Y. Ren ◽  
R.T. Dirksen ◽  
...  

Human dental pulp stem cells (hDPSCs) reside in postnatal dental pulp and exhibit the potential to differentiate into odontoblasts as well as neurons. However, the intercellular signaling niches necessary for hDPSC survival and self-renewal remain largely unknown. The objective of this study is to demonstrate the existence of intercellular purinergic signaling in hDPSCs and to assess the impact of purinergic signaling on hDPSC survival and proliferation. hDPSCs were isolated from extracted third molars and cultured in minimum essential medium. To demonstrate responsiveness to ATP application and inhibitions by purinergic receptor antagonists, whole cell patch-clamp recordings of ATP-induced currents were recorded from cultured hDPSCs. Immunofluorescence and enzymatic histochemistry staining were performed to assess purinergic receptor expression and ectonucleotidase activity in hDPSCs, respectively. To determine the effects of purinergic signaling on hDPSC, purinergic receptor antagonists and an ectonucleotidase inhibitor were applied in culture medium, and hDPSC survival and proliferation were assessed with DAPI staining and Ki67 immunofluorescence staining, respectively. We demonstrated that ATP application induced inward currents in hDPSCs. P2X and P2Y receptors are involved in the generation of ATP-induced inward currents. We also detected expression of NTPDase3 and ectonucleotidase activity in hDPSCs. We further demonstrated that purinergic receptors were tonically activated in hDPSCs and that inhibition of ectonucleotidase activity enhanced ATP-induced inward currents. Furthermore, we found that blocking P2Y and P2X receptors reduced—and inhibition of ecto-ATPase activity enhanced—the survival and proliferation of hDPSCs, while blocking P2X receptors alone affected only hDPSC proliferation. Autocrine/paracrine purinergic signaling is essential for hDPSC survival and proliferation. These results reveal potential targets to manipulate hDPSCs to promote tooth/dental pulp repair and regeneration.

2016 ◽  
Vol 53 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Wenru Pan ◽  
Karlea L. Kremer ◽  
Xenia Kaidonis ◽  
Victoria E. Ludlow ◽  
Mary‐Louise Rogers ◽  
...  

2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 716
Author(s):  
Simona Delle Delle Monache ◽  
Fanny Pulcini ◽  
Roberta Frosini ◽  
Vincenzo Mattei ◽  
Vincenzo Nicola Talesa ◽  
...  

Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.


2018 ◽  
Vol 85 ◽  
pp. 104-112 ◽  
Author(s):  
Mingwei Li ◽  
Liang Ma ◽  
Bing Song ◽  
Dingyi Yu ◽  
Min Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document