scholarly journals Distribution of Dystroglycan in Normal Adult Mouse Tissues

1998 ◽  
Vol 46 (4) ◽  
pp. 449-457 ◽  
Author(s):  
Madeleine Durbeej ◽  
Michael D. Henry ◽  
Maria Ferletta ◽  
Kevin P. Campbell ◽  
Peter Ekblom

Dystroglycan is a cell surface protein which, in muscle, links the extracellular matrix protein laminin-2 to the intracellular cytoskeleton. Dystroglycan also binds laminin-1 and the binding occurs via the E3 fragment of laminin-1. Recently, it was found that dystroglycan is expressed in developing epithelial cells of the kidney. Moreover, antibodies against dystroglycan can perturb epithelial development in kidney organ culture. Therefore, dystroglycan may be an important receptor for cell–matrix interactions in non-muscle tissues. However, information about the tissue distribution of dystroglycan is limited, especially in adult tissues. Here we show that dystroglycan is present in epithelial cells in several non-muscle organs of adult mice. Dystroglycan is enriched towards the basal side of the epithelial cells that are in close contact with basement membranes. We suggest that dystroglycan is involved in linking basement membranes to epithelial and muscle cells. Dystroglycan may be important for the maintenance of tissue integrity.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shukun Zhang ◽  
Jinwu Peng ◽  
Yan Guo ◽  
Sara Javidiparsijani ◽  
Guirong Wang ◽  
...  

In this study, we first generated and characterized a polyclonal antibody against unique domain of matrlin-2 and then used this specific antibody to assess the expression pattern of matrilin-2 by immunohistochemistry. We found that marilin-2 is widely distributed in the connective tissues of many mouse tissues including heart, colon, penis, esophagus, lung, kidney, tracheal cartilage, developmental bone, and adult bone. The expression level of matrilin-2 was remarkably increased in the tissues of osteoarthritis developmental articular cartilage, compared to normal healthy tissues. Furthermore, we determined matrilin-2 expression in specific epithelial cells in stomach and ductal epithelial cells of salivary gland. In other tissues, the positive signals were mainly located around cardiac muscle cells and Purkinje fibers in the heart; corpus spongiosum in the penis; submucosa in the colon and esophagus; extracellular matrix of cartilage in the tracheal cartilage; and, glomerulus, the basement membrane of distal convoluted tubule and renal matrix in kidney. These observations indicated that the distribution pattern of matrilin-2 is heterogeneous in each tissue. Matrilin-2 may play an important role in the communication of matrix to matrix and matrix to cells and will be used as a potential biomarker in the early stage of osteoarthritis of articular cartilage.


1993 ◽  
Vol 123 (5) ◽  
pp. 1269-1277 ◽  
Author(s):  
T C Pan ◽  
T Sasaki ◽  
R Z Zhang ◽  
R Fässler ◽  
R Timpl ◽  
...  

A new protein, fibulin-2, was predicted from sequence analysis of cDNA clones obtained from a mouse fibroblast library. This protein consists of a 1195-residue polypeptide preceded by a 26-residue signal peptide. The COOH-terminal region of 787 amino acids contained three anaphylatoxin-related segments (domain I), 11 EGF-like repeats (domain II), 10 of which had a consensus motif for calcium-binding, and a 115-residue globular domain III. Except for two additional EGF-like repeats, this COOH-terminal region showed 43% sequence identity with the previously described fibulin-1 (BM-90). The NH2-terminal 408 residues, unique to fibulin-2, showed no sequence homology to other known proteins and presumably form two additional domains that differ in their cysteine content. Recombinant fibulin-2 was produced and secreted by human cell clones as a disulfide-bonded trimer. Rotary shadowing visualized the protein as three 40-45 nm long rods which are connected at one end in a globe-like structure. No significant immunological cross-reaction could be detected between fibulin-1 and fibulin-2. Production of the fibulin-2 was demonstrated by Northern blots and radioimmunoassay in fibroblasts but not in several tumor cell lines. Together with the observation that the serum level of fibulin-2 is 1,000-fold lower than that of fibulin-1, the data indicate that these two isoforms are not always coordinately expressed. This is also suggested by Northern blots of tissue mRNAs and by immunofluorescence localizations using mouse tissues. The latter studies also demonstrated an extracellular localization for fibulin-2 in basement membranes and other connective tissue compartments.


2009 ◽  
Vol 20 (9) ◽  
pp. 1759-1764 ◽  
Author(s):  
Makiko Nakamura ◽  
Kumiko Yamaguchi ◽  
Masayasu Mie ◽  
Makoto Nakamura ◽  
Keiichi Akita ◽  
...  

Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 883-894 ◽  
Author(s):  
B.E. Vogel ◽  
E.M. Hedgecock

him-4 mutations cause a novel syndrome of tissue fragility, defective cell migration and chromosome instability in Caenorhabditis elegans. Null mutants have abnormal escape reflex, mispositioning of the vas deferens and uterus, and mitotic chromosome loss and multinucleate cells in the germline. The him-4 gene product, hemicentin, is a conserved extracellular matrix protein with 48 tandem immunoglobulin repeats flanked by novel terminal domains. Secreted from skeletal muscle and gonadal leader cells, hemicentin assembles into fine tracks at specific sites, where it contracts broad regions of cell contact into oriented linear junctions. Some tracks organize hemidesmosomes in the overlying epidermis. Hemicentin tracks facilitate mechanosensory neuron anchorage to the epidermis, gliding of the developing gonad along epithelial basement membranes and germline cellularization.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Jiachao Wang ◽  
Meiqi Meng ◽  
Miao Li ◽  
Xiaofei Guan ◽  
Jianguo Liu ◽  
...  

ABSTRACT Group A Streptococcus (GAS), one of the most common extracellular pathogens, has been reported to invade epithelial and endothelial cells. Our results reveal that M1 GAS strain SF370 can be effectively eliminated by respiratory epithelial cells. Emerging evidence indicates that autophagy is an important strategy for nonphagocytes to eliminate intracellular bacteria. Upon pathogen recognition, cell surface receptors can directly trigger autophagy, which is a critical step in controlling infection. However, the mechanisms of how cells sense invading bacteria and use this information specifically to trigger autophagy remain unclear. In this study, we stimulated cells and infected mice with M and FbaA mutants of M1 GAS strain SF370 or with purified M and FbaA proteins (two critical surface structural proteins of GAS), and found that only FbaA protein was involved in autophagy induction. Furthermore, the FbaA protein induced autophagy independent of common pattern recognition receptors (such as Toll-like receptors); rather, it relies on binding to integrin α5β1 expressed on the cell surface, which is mediated by extracellular matrix protein fibronectin (Fn). The FbaA-Fn-integrin α5β1 complex activates Beclin-1 through the mTOR-ULK1–Beclin-1 pathway, which enables the Beclin-1/Vps34 complex to recruit Rab7 and, ultimately, to promote the formation of autophagosomes. By knocking down integrin α5β1, Fn, Atg5, Beclin-1, and ULK1 in Hep2 cells and deleting Atg5 or integrin α5β1 in mice, we reveal a novel role for integrin α5β1 in inducing autophagy. Our study demonstrates that integrin α5β1, through interacting with pathogen components, initiates effective host innate immunity against invading intracellular pathogens. IMPORTANCE Autophagy is generally considered a strategy used by the innate immune system to eliminate invasive pathogens through capturing and transferring them to lysosomes. Currently, researchers pay more attention to how virulence factors secreted by GAS regulate the autophagic process. Here, we provide the first evidence that the structural protein FbaA of M1 GAS strain SF370 is a potent inducer of autophagy in epithelial cells. Furthermore, we demonstrate that integrin α5β1 in epithelial cells in vitro and in vivo acts as a receptor to initiate the signaling for inducing autophagy by binding to FbaA of M1 GAS strain SF370 via Fn. Our study reveals the underlying mechanisms by which pathogens induce Fn-integrin α5β1 to trigger autophagy in a conserved pattern in epithelial cells.


Genetics ◽  
2020 ◽  
Vol 214 (4) ◽  
pp. 941-959 ◽  
Author(s):  
José G. Montoyo-Rosario ◽  
Stephen T. Armenti ◽  
Yuliya Zilberman ◽  
Jeremy Nance

Epithelial cells form intercellular junctions to strengthen cell–cell adhesion and limit diffusion, allowing epithelia to function as dynamic tissues and barriers separating internal and external environments. Junctions form as epithelial cells differentiate; clusters of junction proteins first concentrate apically, then mature into continuous junctional belts that encircle and connect each cell. In mammals and Drosophila, atypical protein kinase C (aPKC) is required for junction maturation, although how it contributes to this process is poorly understood. A role for the Caenorhabditis elegans aPKC homolog PKC-3 in junction formation has not been described previously. Here, we show that PKC-3 is essential for junction maturation as epithelia first differentiate. Using a temperature-sensitive allele of pkc-3 that causes junction breaks in the spermatheca and leads to sterility, we identify intragenic and extragenic suppressors that render pkc-3 mutants fertile. Intragenic suppressors include an unanticipated stop-to-stop mutation in the pkc-3 gene, providing evidence for the importance of stop codon identity in gene activity. One extragenic pkc-3 suppressor is a loss-of-function allele of the lethal(2) giant larvae homolog lgl-1, which antagonizes aPKC within epithelia of Drosophila and mammals, but was not known previously to function in C. elegans epithelia. Finally, two extragenic suppressors are loss-of-function alleles of sups-1—a previously uncharacterized gene. We show that SUPS-1 is an apical extracellular matrix protein expressed in epidermal cells, suggesting that it nonautonomously regulates junction formation in the spermatheca. These findings establish a foundation for dissecting the role of PKC-3 and interacting genes in epithelial junction maturation.


1995 ◽  
Vol 108 (12) ◽  
pp. 3795-3805 ◽  
Author(s):  
F. Schuler ◽  
L.M. Sorokin

The expression of laminin-1 (previously EHS laminin) and laminin-2 (previously merosin) isoforms by myogenic cells was examined in vitro and in vivo. No laminin alpha 2 chainspecific antibodies react with mouse tissues, 50 rat monoclonal antibodies were raised against the mouse laminin alpha 2 chain: their characterization is described here. Myoblasts and myotubes from myogenic cell lines and primary myogenic cultures express laminin beta 1 and gamma 1 chains and form a complex with a 380 kDa alpha chain identified as laminin alpha 2 by immunofluorescence, immunoprecipitation and PCR. PCR from C2C12 myoblasts and myotubes for the laminin alpha 2 chain gene (LamA2) provided cDNA sequences which were used to investigate the in vivo expression of mouse LamA2 mRNA in embryonic tissues by in situ hybridization. Comparisons were made with specific probes for the laminin alpha 1 chain gene (LamA1). LamA2 but not LamA1 mRNA was expressed in myogenic tissues of 14- and 17-day-old mouse embryos, while the laminin alpha 2 polypeptide was localized in adjacent basement membranes in the muscle fibres. In situ hybridization also revealed strong expression of the LamA2 mRNA in the dermis, indicating that laminin alpha 2 is expressed other than by myogenic cells in vivo. Immunofluorescence studies localized laminin alpha 2 in basement membranes of basal keratinocytes and the epithelial cells of hair follicles, providing new insight into basement membrane assembly during embryogenesis. In vitro cell attachment assays revealed that C2C12 and primary myoblasts adhere to laminin-1 and -2 isoforms in a similar manner except that myoblast spreading was significantly faster on laminin-2. Taken together, the data suggest that laminins 1 and 2 play distinct roles in myogenesis.


2006 ◽  
Vol 290 (6) ◽  
pp. G1228-G1242 ◽  
Author(s):  
Adel Driss ◽  
Laetitia Charrier ◽  
Yutao Yan ◽  
Vivienne Nduati ◽  
Shanthi Sitaraman ◽  
...  

The dystroglycans (α-DG and β-DG), which play important roles in the formation of basement membranes, have been well studied in skeletal muscle and nerve, but their expression and localization in intestinal epithelial cells has not been previously investigated. Here, we demonstrated that the DG complex, composed of α-DG, β-DG, and utrophin, is specifically expressed in the basolateral membrane of the Caco-2-BBE monolayer. The DG complex coprecipitated with β1-integrin, suggesting a possible interaction among these proteins. In addition, we observed that activation of DG receptors by laminin-1 enhanced the interaction between β1-integrin and laminin-1, whereas activation of DG receptors by laminin-2 reduced the interaction between β1-integrin and laminin-2. Finally, we demonstrated that the intracellular COOH-terminal tail of β-DG and its binding to the DG binding domain of utrophin are crucial for the interactions between laminin-1/-2 and β1-integrin. Collectively, these novel results indicate that dystroglycans play important roles in the regulation of interactions between intestinal epithelial cells and the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document