Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo

1995 ◽  
Vol 108 (12) ◽  
pp. 3795-3805 ◽  
Author(s):  
F. Schuler ◽  
L.M. Sorokin

The expression of laminin-1 (previously EHS laminin) and laminin-2 (previously merosin) isoforms by myogenic cells was examined in vitro and in vivo. No laminin alpha 2 chainspecific antibodies react with mouse tissues, 50 rat monoclonal antibodies were raised against the mouse laminin alpha 2 chain: their characterization is described here. Myoblasts and myotubes from myogenic cell lines and primary myogenic cultures express laminin beta 1 and gamma 1 chains and form a complex with a 380 kDa alpha chain identified as laminin alpha 2 by immunofluorescence, immunoprecipitation and PCR. PCR from C2C12 myoblasts and myotubes for the laminin alpha 2 chain gene (LamA2) provided cDNA sequences which were used to investigate the in vivo expression of mouse LamA2 mRNA in embryonic tissues by in situ hybridization. Comparisons were made with specific probes for the laminin alpha 1 chain gene (LamA1). LamA2 but not LamA1 mRNA was expressed in myogenic tissues of 14- and 17-day-old mouse embryos, while the laminin alpha 2 polypeptide was localized in adjacent basement membranes in the muscle fibres. In situ hybridization also revealed strong expression of the LamA2 mRNA in the dermis, indicating that laminin alpha 2 is expressed other than by myogenic cells in vivo. Immunofluorescence studies localized laminin alpha 2 in basement membranes of basal keratinocytes and the epithelial cells of hair follicles, providing new insight into basement membrane assembly during embryogenesis. In vitro cell attachment assays revealed that C2C12 and primary myoblasts adhere to laminin-1 and -2 isoforms in a similar manner except that myoblast spreading was significantly faster on laminin-2. Taken together, the data suggest that laminins 1 and 2 play distinct roles in myogenesis.

2007 ◽  
Vol 15 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Gianfranco Coppola ◽  
Basil Alexander ◽  
Dino Di Berardino ◽  
Elizabeth St John ◽  
Parvathi K. Basrur ◽  
...  

2020 ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yang Yang ◽  
Zhen Zhang ◽  
Quan Wang ◽  
...  

Abstract Background circular RNAs (circRNAs) recently have been emerged as vital regulators for involvement of initiation and progression of diverse kinds of human cancers. This study aimed to investigate the role of circRNAs in colorectal cancer (CRC). Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results hsa_circ_0000231 was evidently up-regulated in CRC primary tissues, which was indicated to poor prognosis of CRC patients. The results demonstrated that hsa_circ_0000231 could promote CRC cell proliferation as well as tumorigenesis in vitro and in vivo. Mechanistic analysis showed that hsa_circ_0000231 might on the one hand act as a ceRNA (competing endogenous RNA) of miR-375 to regulate cyclin D2 (CCND2), and on the other hand bind to IGF2BP3 protein to protect CCND2 from being degraded. Conclusion Our findings suggest that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2. This discovery implied that has_circ_0000231 may be a potential new diagnostic and therapeutic biomarker for CRC.


Author(s):  
S. Bursztajn ◽  
S. A. Berman

Muscle cells are multinucleated and each nucleus has the capacity of expressing many genes. Both in vivo and in vitro the AChR clusters appear to be associated with clusters of nuclei. To answer the question whether each nucleus in a multinucleated myotube is equally active in expressing the AChR message and how this may be regulated by motor neuron we have carried out in situ hybridization with radiolabeled probes to the AChR α subunit RNA. We have found that muscle cells do not express the mRNA at equal levels. The response we have observed is not due to the death, or the metabolic inactivity of some nuclei. Cells hybridized with a probe for U1 small nuclear RNA, show grains in every nucleus with approximately the same grain distribution. To better understand how the motor neuron may regulate the AChR gene expression we have combined in situ hybridization with immunocytochemistry. We radiolabeled the AChR intron/exon probes with two (35S) thiodeoxynucleoside triphosphates (dNYPs).


2021 ◽  
Author(s):  
Penghui Xu ◽  
Xing Zhang ◽  
Jiacheng Cao ◽  
Jing Yang ◽  
Zetian Chen ◽  
...  

Abstract Background: Gastric cancer (GC) ranks third in motality among all cancers worldwide. Circular RNAs (circRNAs) play essential roles in the malignant progression and metastasis of gastric cancer. As a transcription factor, FOXP2 is involved in the progression of many tumours. However, the regulation and association between circRNAs and FOXP2 remain to be discovered. Methods: RNA sequencing was used to explore differential circRNA expression profile in gastric cancer and quantitative real-time PCR (qRT-PCR) were used to detect circST3GAL6 expression. The cellular location of circST3GAL6 was determined by fluorescence in situ hybridization (FISH). Functional experiments in circST3GAL6 knockdown and overexpression cell lines were performed in vitro and in vivo. The correlation between circST3GAL6 and miR-300 was confirmed by the RNA pull-down assay, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The effects of circST3GAL6 on autophagy were detected by confocal microscopy and transmission electron microscopy (TEM). The mechanism of the circST3GAL6/miR-300/FOXP2 axis was verified by western blotting. The transcriptional regulation of Met by FOXP2 was proven by ChIP and luciferase reporter assays.Results: CircST3GAL6 was significantly depressed in GC tissues and cells. circST3GAL6 overexpression inhibited the proliferation, invasion and metastasis of GC cells in vitro and in vivo. Importantly, circST3GAL6 overexpression induced apoptosis and promote autophagy in GC cells. Furthermore, we found that circST3GAL6 sponged miR-300 and subsequently regulated FOXP2. We further revealed that FOXP2 suppressed the activation of the Met/AKT/mTOR axis, a classic pathway that regulates autophagy-mediated proliferation and migration.Conclusion: Our findings revealed that circST3GAL6 functions as a tumour suppressor through the miR-300/FOXP2 axis in GC, regulates apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis and may be a biomarker for GC treatment.


Author(s):  
Xiaojian Zhu ◽  
Fanqin Bu ◽  
Ting Tan ◽  
Qilin Luo ◽  
Jinfeng Zhu ◽  
...  

Abstract Background Accumulating evidence indicates that long non-coding RNAs (lncRNAs) acting as crucial regulators in tumorigenesis. However, its biological functions of lncRNAs in colorectal cancer (CRC) have not been systematically clarified. Methods An unbiased screening was performed to identify disregulated lncRNAs revealed to be implicated in CRC carcinogenesis according to an online-available data dataset. In situ hybridization (ISH), RT-qPCR and RNA fluorescence in situ hybridization (RNA-FISH) were applied to detect RP11-757G1.5 expression in CRC tissues and cell lines. The associations of RP11-757G1.5 with clinicopathological characteristics were analyzed. Their effects on prognosis were analyzed by the Kaplan-Meier analysis, Log-rank test, Univariate and Multivariate Cox regression analysis. The potential biological function of RP11-757G1.5 in CRC was investigated by Colony formation, Edu cell proliferation, Flow cytometry, Wound healing and Transwell assays. Bioinformatics binding site analysis, Luciferase reporter assay, Ago2 immunoprecipitation assays, RNA pull-down assay, RT-qPCR and Western blotting were utilized to demonstrate the mechanism of RP11-757G1.5 acts as a molecular sponge of miR-139-5p to regulate the expression of YAP1. Finally, we further explore the potential role of RP11-757G1.5 in CRC orthotopic xenografts in vivo. Results We discovered a novel oncogenic lncRNA RP11-757G1.5, that was overexpressed in CRC tissues, especially in aggressive cases. Moreover, up-regulation of RP11-757G1.5 strongly correlated with poor clinical outcomes of patients with CRC. Functional analyses revealed that RP11-757G1.5 promoted cell proliferation in vitro and in vivo. Furthermore, RP11-757G1.5 stimulated cell migration and invasion in vitro and in vivo. Mechanistic studies illustrated that RP11-757G1.5 regulated the expression of YAP1 through sponging miR-139-5p and inhibiting its activity thereby promoting CRC progression and development. Conclusions Altogether, these results reveal a novel RP11-757G1.5/miR-139-5p/YAP1 regulatory axis that participates in CRC carcinogenesis and progression.


2004 ◽  
Vol 287 (3) ◽  
pp. E583-E590 ◽  
Author(s):  
S. A. Stanley ◽  
K. G. Murphy ◽  
G. A. Bewick ◽  
W. M. Kong ◽  
J. Opacka-Juffry ◽  
...  

Cocaine- and amphetamine-regulated transcript (CART) was originally isolated from rat brain, but CART is also synthesized and stored in the anterior pituitary. The localization of pituitary CART and factors regulating its synthesis are largely unknown. The regulation of pituitary CART synthesis and release in response to CRH and glucocorticoids was examined in vitro and in vivo. CART immunoreactivity (CART-IR) was released from anterior pituitary segments. This release was increased 15-fold in response to corticotropin-releasing hormone (CRH). Intraperitoneal administration of CRH to rats significantly increased plasma CART-IR. Furthermore, CART-IR content and plasma CART-IR were significantly increased in adrenalectomized rats, and anterior pituitary CART mRNA expression, CART-IR content, and plasma CART-IR were significantly decreased in corticosterone-treated rats. Plasma CART-IR showed a pattern of diurnal variation similar to that of ACTH and corticosterone, and plasma CART-IR was positively correlated with corticosterone. CART-IR was detectable in the medium of the corticotroph cell line AtT-20. Dual in situ hybridization for prepro-CART (ppCART) mRNA expression and immunocytochemistry for ACTH showed localization of ppCART mRNA to a subpopulation of ACTH-immunoreactive cells. These findings demonstrate that pituitary CART expression and release are regulated by CRH and the glucocorticoid environment and that pituitary CART is partly localized to corticotrophs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yaxin Guo ◽  
Yuying Guo ◽  
Chen Chen ◽  
Dandan Fan ◽  
Xiaoke Wu ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most common malignant tumours. The recurrence and metastasis of CRC seriously affect the survival rate of patients. Angiogenesis is an extremely important cause of tumour growth and metastasis. Circular RNAs (circRNAs) have been emerged as vital regulators for tumour progression. However, the regulatory role, clinical significance and underlying mechanisms still remain largely unknown. Methods High-throughput sequencing was used to analyse differential circRNAs expression in tumour and non-tumour tissues of CRC. In situ hybridization (ISH) and qRT-PCR were used to determine the level of circ3823 in CRC tissues and serum samples. Then, functional experiments in vitro and in vivo were performed to investigate the effects of circ3823 on tumour growth, metastasis and angiogenesis in CRC. Sanger sequencing, RNase R and Actinomycin D assay were used to verify the ring structure of circ3823. Mechanistically, dual luciferase reporter assay, fluorescent in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circ3823. Results Circ3823 was evidently highly expressed in CRC and high circ3823 expression predicted a worse prognosis of CRC patients. Receiver operating characteristic curves (ROCs) indicated that the expression of circ3823 in serum showed high sensitivity and specificity for detecting CRC which means circ3823 have the potential to be used as diagnostic biomarkers. Functional experiments in vitro and in vivo indicated that circ3823 promote CRC cell proliferation, metastasis and angiogenesis. Mechanism analysis showed that circ3823 act as a competing endogenous RNA of miR-30c-5p to relieve the repressive effect of miR-30c-5p on its target TCF7 which upregulates MYC and CCND1, and finally facilitates CRC progression. In addition, we found that N6-methyladenosine (m6A) modification exists on circ3823. And the m6A modification is involved in regulating the degradation of circ3823. Conclusions Our findings suggest that circ3823 promotes CRC growth, metastasis and angiogenesis through circ3823/miR-30c-5p/TCF7 axis and it may serve as a new diagnostic marker or target for treatment of CRC patients. In addition, m6A modification is involved in regulating the degradation of circ3823.


Sign in / Sign up

Export Citation Format

Share Document