Does Exercise Reduce Aggressive Feelings? An Experiment Examining the Influence of Movement Type and Social Task Conditions on Testiness and Anger Reduction

2016 ◽  
Vol 122 (3) ◽  
pp. 971-987 ◽  
Author(s):  
Fabian Pels ◽  
Jens Kleinert
2019 ◽  
Vol 62 (7) ◽  
pp. 2099-2117 ◽  
Author(s):  
Jason A. Whitfield ◽  
Zoe Kriegel ◽  
Adam M. Fullenkamp ◽  
Daryush D. Mehta

Purpose Prior investigations suggest that simultaneous performance of more than 1 motor-oriented task may exacerbate speech motor deficits in individuals with Parkinson disease (PD). The purpose of the current investigation was to examine the extent to which performing a low-demand manual task affected the connected speech in individuals with and without PD. Method Individuals with PD and neurologically healthy controls performed speech tasks (reading and extemporaneous speech tasks) and an oscillatory manual task (a counterclockwise circle-drawing task) in isolation (single-task condition) and concurrently (dual-task condition). Results Relative to speech task performance, no changes in speech acoustics were observed for either group when the low-demand motor task was performed with the concurrent reading tasks. Speakers with PD exhibited a significant decrease in pause duration between the single-task (speech only) and dual-task conditions for the extemporaneous speech task, whereas control participants did not exhibit changes in any speech production variable between the single- and dual-task conditions. Conclusions Overall, there were little to no changes in speech production when a low-demand oscillatory motor task was performed with concurrent reading. For the extemporaneous task, however, individuals with PD exhibited significant changes when the speech and manual tasks were performed concurrently, a pattern that was not observed for control speakers. Supplemental Material https://doi.org/10.23641/asha.8637008


GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


2001 ◽  
Vol 15 (4) ◽  
pp. 256-274 ◽  
Author(s):  
Caterina Pesce ◽  
Rainer Bösel

Abstract In the present study we explored the focusing of visuospatial attention in subjects practicing and not practicing activities with high attentional demands. Similar to the studies of Castiello and Umiltà (e. g., 1990) , our experimental procedure was a variation of Posner's (1980) basic paradigm for exploring covert orienting of visuospatial attention. In a simple RT-task, a peripheral cue of varying size was presented unilaterally or bilaterally from a central fixation point and followed by a target at different stimulus-onset-asynchronies (SOAs). The target could occur validly inside the cue or invalidly outside the cue with varying spatial relation to its boundary. Event-related brain potentials (ERPs) and reaction times (RTs) were recorded to target stimuli under the different task conditions. RT and ERP findings showed converging aspects as well as dissociations. Electrophysiological results revealed an amplitude modulation of the ERPs in the early and late Nd time interval at both anterior and posterior scalp sites, which seems to be related to the effects of peripheral informative cues as well as to the attentional expertise. Results were: (1) shorter latency effects confirm the positive-going amplitude enhancement elicited by unilateral peripheral cues and strengthen the criticism against the neutrality of spatially nonpredictive peripheral cueing of all possible target locations which is often presumed in behavioral studies. (2) Longer latency effects show that subjects with attentional expertise modulate the distribution of the attentional resources in the visual space differently than nonexperienced subjects. Skilled practice may lead to minimizing attentional costs by automatizing the use of a span of attention that is adapted to the most frequent task demands and endogenously increases the allocation of resources to cope with less usual attending conditions.


2015 ◽  
Vol 31 (1) ◽  
pp. 20-30 ◽  
Author(s):  
William S. Helton ◽  
Katharina Näswall

Conscious appraisals of stress, or stress states, are an important aspect of human performance. This article presents evidence supporting the validity and measurement characteristics of a short multidimensional self-report measure of stress state, the Short Stress State Questionnaire (SSSQ; Helton, 2004 ). The SSSQ measures task engagement, distress, and worry. A confirmatory factor analysis of the SSSQ using data pooled from multiple samples suggests the SSSQ does have a three factor structure and post-task changes are not due to changes in factor structure, but to mean level changes (state changes). In addition, the SSSQ demonstrates sensitivity to task stressors in line with hypotheses. Different task conditions elicited unique patterns of stress state on the three factors of the SSSQ in line with prior predictions. The 24-item SSSQ is a valid measure of stress state which may be useful to researchers interested in conscious appraisals of task-related stress.


2001 ◽  
Author(s):  
J. Deffenbacher ◽  
E. Dahlen ◽  
R. Lynch ◽  
C. Morris ◽  
W. Gowensmith

Author(s):  
Arthur F. Kramer ◽  
Christopher D. Wickens ◽  
Emanuel Donchin
Keyword(s):  

1997 ◽  
Author(s):  
Gail Musen ◽  
Sumanas Siripant ◽  
Lori Boncher

Author(s):  
Robbin Romijnders ◽  
Elke Warmerdam ◽  
Clint Hansen ◽  
Julius Welzel ◽  
Gerhard Schmidt ◽  
...  

Abstract Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


Sign in / Sign up

Export Citation Format

Share Document