Bending properties of three-dimensional honeycomb sandwich structure composites: experiment and Finite Element Method simulation

2017 ◽  
Vol 88 (17) ◽  
pp. 2024-2031 ◽  
Author(s):  
Lihua Lv ◽  
Yaoli Huang ◽  
Jingrui Cui ◽  
Yongfang Qian ◽  
Fang Ye ◽  
...  

This paper fabricated three-dimensional (3D) honeycomb sandwich structure fabrics with three different cross-section shapes on an ordinary loom by reasonable design with low cost. The 3D honeycomb sandwich structure composites were fabricated by the vacuum assisted resin transfer molding process. Then, the bending properties of 3D honeycomb sandwich structure composites with different cross-section shapes were tested. The results showed that the 3D honeycomb sandwich structure composite with a hexagonal cross-section shape had the maximum load, the 3D honeycomb sandwich structure composite with a triquetrous cross-section shape had the minimum load and the 3D honeycomb sandwich structure composite with a quadrangular cross-section shape had a load between the two. The bending failure mode showed that the 3D honeycomb sandwich structure composite had a typical bending failure mode with compression failure in the front and tensile failure in the back. Finally, the load–displacement curves and failure mode were obtained by FEM (Finite Element Method) simulation with ABAQUS software. The good agreements of comparisons proved the validity of the FEM.

Author(s):  
П.Ю. Георгиевский ◽  
В.А. Левин ◽  
О.Г. Сутырин

AbstractThree-dimensional interaction of a shock with lateral low-density gas channel of round, elliptic or rectangular cross-section is numerically studied using Euler’s equations. The structure of formed shock wave precursor is described in detail. Internal shear layer instabilities in three-dimensional flow are shown to develop faster than in axisymmetric case. Moderate amplification of high-pressure jet cumulation effect is noted for elliptic and rectangular channel cases. Dependence of precursor growth rate on cross-section shape is studied. It is found that stretching of cross-section shape significantly increases the duration of linear precursor growth phase.


Author(s):  
Mohammad Mojaddam ◽  
Ali Hajilouy Benisi ◽  
Mohammad Reza Movahhedi

In this article, the effects of volute cross section shape and centroid profile of a centrifugal compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and flow parameters at the inlet and outlet of the centrifugal compressor. The three dimensional flow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry. By varying this parameter, new volutes were generated and modeled. The effect of volute cross section shape on compressor pressure ratio and efficiency at design rotational speed were investigated. Also pressure non-uniformity around compressor impeller for new cases was calculated and reported. The results showed how the cross section shape of the volute can influence the compressor characteristics and the non-uniformity of circumferential static pressure as well.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2119
Author(s):  
Luís Mesquita David ◽  
Rita Fernandes de Carvalho

Designing for exceedance events consists in designing a continuous route for overland flow to deal with flows exceeding the sewer system’s capacity and to mitigate flooding risk. A review is carried out here on flood safety/hazard criteria, which generally establish thresholds for the water depth and flood velocity, or a relationship between them. The effects of the cross-section shape, roughness and slope of streets in meeting the criteria are evaluated based on equations, graphical results and one case study. An expedited method for the verification of safety criteria based solely on flow is presented, saving efforts in detailing models and increasing confidence in the results from simplified models. The method is valid for 0.1 m2/s 0.5 m2/s. The results showed that a street with a 1.8% slope, 75 m1/3s−1 and a rectangular cross-section complies with the threshold 0.3 m2/s for twice the flow of a street with the same width but with a conventional cross-section shape. The flow will be four times greater for a 15% street slope. The results also highlighted that the flood flows can vary significantly along the streets depending on the sewers’ roughness and the flow transfers between the major and minor systems, such that the effort detailing a street’s cross-section must be balanced with all of the other sources of uncertainty.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rachel M. Starkweather ◽  
Svetlana V. Poroseva ◽  
David T. Hanson

AbstractAn important role that the leading-edge cross-section shape plays in the wing flight performance is well known in aeronautics. However, little is known about the shape of the leading-edge cross section of an insect’s wing and its contribution to remarkable qualities of insect flight. In this paper, we reveal, in the first time, the shape of the leading-edge cross section of a cicada’s wing and analyze its variability along the wing. We also identify and quantify similarities in characteristic dimensions of this shape in the wings of three different cicada species.


2009 ◽  
Vol 79-82 ◽  
pp. 1727-1730 ◽  
Author(s):  
Xiao Dong He ◽  
Xiang Hao Kong ◽  
Li Ping Shi ◽  
Ming Wei Li

ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. So the active environment of metal honeycomb sandwich structure is very formidable. We have to discuss any extreme situation, for reason of making sure aerial vehicle is safe. And high-frequency vibration is one of active environment. In this paper we have analyzed high-frequency vibration response of metal honeycomb sandwich structure. We processed high-frequency vibration experiment by simulating true aerial environment. Sequentially we operated high-frequency vibration experiment of metal honeycomb sandwich structure with cracks, notches and holes. Then finite-element analysis was performed by way of validating the experiment results. Haynes214 is a good high temperature alloy material of both face sheet and core at present, so we choose it in this paper.


2019 ◽  
Vol 13 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Alexandre Hubert ◽  
Jean-Philippe Colonna ◽  
Stéphane Bécu ◽  
Cécilia Dupré ◽  
Virginie Maffini-Alvaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document