Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation

2021 ◽  
pp. 004051752110086
Author(s):  
Lihong Jiang ◽  
Hong Hong ◽  
Jiyong Hu

Carbon nanotubes have been widely used to formulate printed conductive ink in recent years due to their excellent conductivity, chemical stability and mechanical properties. However, the common problems of this ink, such as poor adhesion and low resistance stability under large deformation, hinder its application in the fabric electrodes (FEs) of wearable and stretchable e-textiles. Herein, conductive inks with a simple preparation process, high adhesion and conductive stability were formulated by mixing the conductive filler, multi-walled carbon nanotubes (MWCNTs), into a thermoplastic polyurethane matrix with a reversible cross-linked structure. Then it is evaluated whether the MWCNT-based conductive ink is suitable for the screen-printing fabrication of highly durable and washable FEs. The experimental results showed that the screen-printed fabric electrode exhibited remarkable resistance stability under bending and folding deformation. In particular, after 1000 bending cycles and 100 folding–unfolding cycles under additional pressure, the sheet resistance of FEs only increased by 0.8% and 5.0%, respectively. Moreover, the screen-printed conductive pattern has strong adhesion to polyamide fabric substrate by the Scotch tape and washing tests, and there are no significant changes in resistance and surface morphology. High-performance conductive inks with facile and large-scale production potential are developed, and show great prospect in the development of wearable printing e-textiles.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Qinghua Li ◽  
Jintao Liu ◽  
Shilang Xu

As one-dimensional (1D) nanofiber, carbon nanotubes (CNTs) have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs) reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.


2007 ◽  
Vol 40 (8) ◽  
pp. 2375-2387 ◽  
Author(s):  
Keun Su Kim ◽  
German Cota-Sanchez ◽  
Christopher T Kingston ◽  
Matej Imris ◽  
Benoit Simard ◽  
...  

2012 ◽  
Vol 1451 ◽  
pp. 3-8
Author(s):  
Ricardo P. dos Santos ◽  
Pedro A. Autreto ◽  
Eric Perim ◽  
Gustavo Brunetto ◽  
Douglas S. Galvao

ABSTRACTUnzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges.


2016 ◽  
Vol 852 ◽  
pp. 514-519 ◽  
Author(s):  
Xiao Gang Sun ◽  
Zhi Wen Qiu ◽  
Long Chen ◽  
Man Yuan Cai ◽  
Zhi Peng Pang ◽  
...  

Since the first observation of carbon nanotubes (CNTs) in 1991, their synthesis techniques has been extensively investigated. The chemical vapor deposition (CVD) process have attracted much attention because of both their versatility and easy large scale production for CNTs . This paper is focused on a catalytic CVD-based method for synthesis of whisker multiwalled carbon nanotubes (WMWCNTs). The new type of carbon nanotube is similar to the whisker. The morphology of the WMWCNTs are very different from traditional carbon nanotubes prepared by traditional chemical vapor deposition process. The traditional CNTs were twisted and entangled with each other. These suggested that there are a lot of deficiencies on the CNTs and are difficult to disperse in matrix materials. The as-produced WMWCNTs are very straight and not entangled with each other. The line structure means that WMWCNTs are easily dispersed in matrix materials than traditional CNTs which are twined together. The crystallinity of WMWCNTs increased to 96% which was much higher than traditional CNTs after graphitization treatment at 2800°C.


Author(s):  
Carole E Baddour ◽  
Cedric Briens

Discovered in 1991, carbon nanotubes (CNTs) have reached the forefront of many industrial research projects. Carbon nanotubes are tubular carbon molecules with remarkable mechanical, chemical, thermal and electrical properties, which make them useful in various applications. This paper reviews three methods of synthesizing the nanomaterial, namely arc-discharge, laser-ablation and fixed bed/fluidized bed catalytic. These methods have generated a large interest in many industrial companies to date. At the moment, the most critical issue faced by industrial companies is determining the best synthesis method, which will give the most economical large-scale production of CNTs. Compared to the other two methods, the catalytic technique to synthesize CNTs is simple, inexpensive, energy-efficient and can produce large CNTs quantities of high yield and purity.


2002 ◽  
Vol 359 (1-2) ◽  
pp. 109-114 ◽  
Author(s):  
Cheol Jin Lee ◽  
Seung Chul Lyu ◽  
Hyoun-Woo Kim ◽  
Chong-Yun Park ◽  
Cheol-Woong Yang

Sign in / Sign up

Export Citation Format

Share Document