Monitoring Alcohol and other Drug Treatment: What Would an Optimal System Look Like?

2009 ◽  
Vol 36 (3-4) ◽  
pp. 545-574 ◽  
Author(s):  
Brian Rush ◽  
Larry Corea ◽  
Garth Martin

This article focuses on the state of the art in the design, development, Operation and evaluation of information systems intended to monitor the delivery of specialized alcohol and drug treatment services. We draw particular attention to the conceptual frameworks that guide an overall treatment information system and that can serve as a template for planning new systems or reviewing existing ones. Several key principles are articulated including an open systems perspective to help manage change; active participation and buy-in from a wide range of key stakeholders; and a heavy emphasis on utilization (influence) of the results. We also highlight the ways in which an alcohol and drug services research agenda might intersect with these information systems and consider alternative frameworks for describing use of the information they produce. Supports must be provided at multiple levels in the provider agencies and on an ongoing basis in order to address low capacity for entering quality data at the provider level. The research community should play an important role in helping frame the questions these systems can (and cannot) address; developing high quality performance indicators; supporting innovative local and central data analysis; and reporting aspects of the data of broad interest from a research and health policy perspective.

2020 ◽  
Vol 10 (3) ◽  
pp. 169-184
Author(s):  
Rachna Anand ◽  
Arun Kumar ◽  
Arun Nanda

Background: Solubility and dissolution profile are the major factors which directly affect the biological activity of a drug and these factors are governed by the physicochemical properties of the drug. Crystal engineering is a newer and promising approach to improve physicochemical characteristics of a drug without any change in its pharmacological action through a selection of a wide range of easily available crystal formers. Objective: The goal of this review is to summarize the importance of crystal engineering in improving the physicochemical properties of a drug, methods of design, development, and applications of cocrystals along with future trends in research of pharmaceutical co-crystals. Co-crystallization can also be carried out for the molecules which lack ionizable functional groups, unlike salts which require ionizable groups. Conclusion: Co-crystals is an interesting and promising research area amongst pharmaceutical scientists to fine-tune the physicochemical properties of drug materials. Co-crystallization can be a tool to increase the lifecycle of an older drug molecule. Crystal engineering carries the potential of being an advantageous technique than any other approach used in the pharmaceutical industry. Crystal engineering offers a plethora of biopharmaceutical and physicochemical enhancements to a drug molecule without the need of any pharmacological change in the drug.


2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


2020 ◽  
Vol 113 ◽  
pp. 107968
Author(s):  
Eliza Skelton ◽  
Ashleigh Guillaumier ◽  
Sarah Lambert ◽  
Kerrin Palazzi ◽  
Billie Bonevski

Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


2001 ◽  
Vol 23 (4) ◽  
pp. 286-291 ◽  
Author(s):  
C. Beynon ◽  
M. A. Bellis ◽  
T. Millar ◽  
P. Meier ◽  
R. Thomson ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S645-S646
Author(s):  
Paul R Rhomberg ◽  
Shawn A Messer ◽  
Richard W Scott ◽  
Simon D P Baugh ◽  
Michael A Pfaller ◽  
...  

Abstract Background Fox Chase Chemical Diversity Center (FCC) is developing non-peptide analogs of host defense proteins for the treatment of invasive fungal infections mainly caused by Candida (CAN) and Aspergillus (ASP). We evaluated the activity of 6 novel compounds and 2 comparators against 150 isolates from 15 fungal groups. Methods Susceptibility testing was performed per CLSI broth microdilution methods for investigational compounds and comparators against 70 CAN and 40 ASP isolates in addition to 10 Cryptococcus spp. (CRYP), 10 Fusarium spp. (FUS), 10 Mucorales, and 10 Scedosporium spp. (SCED) isolates from recent (2017-2019) clinical infections. MIC results were determined as ≥ 50% reduction at 24 and 72 hours for CAN and CRYP respectively, and 100% reduction at 24, 72, and 48 hours for Mucorales, SCED, and other moulds, respectively. CLSI clinical breakpoint (CBP) and epidemiological cutoff value (ECV) interpretive criteria were applied for comparators. Results Compounds FC10790, FC11083, FC11212, and FC11275 had MIC50 results at ≤ 0.015 mg/L and MIC90 results at ≤ 0.015 to 0.12 mg/L against CRYP, ASP, and FUS isolates. Compounds FC5096 and FC11022 were 2- to 4-fold less active while demonstrating MIC50 and MIC90 results of 0.03 to 0.5 mg/L against CAN, CRYP, ASP, and FUS isolates. The Mucorales isolate set showed the widest range of MIC results for FC compounds. FC10790 exhibited the greatest potency with a MIC50/90 at 0.5/2 mg/L. FC compounds showed potent activity against SCED with MIC90 results of 0.03 to 0.25 mg/L. Fluconazole showed a wide range of MIC results, from 0.06 to >64 mg/L, but the highest results observed were for Candida auris (MIC50/90, 64/ > 64 mg/L) and Candida krusei (MIC50/90; 16/32 mg/L). Itraconazole was active against all ASP (MIC50/90, 1/1 mg/L), but showed poor activity against FUS (MIC50/90, > 8/ > 8 mg/L). Amphotericin B showed a narrow range of MIC results (0.5 to 2 mg/L) for all isolates except 1 ASP and most SCED. Conclusion Novel FCC compounds showed equal or greater activity than comparators against most CAN, ASP, SCED, and FUS. FC10790, FC11212, and FC11275 showed the greatest activity against all tested fungal isolates. development of this series of compounds for clinical studies. Table 1 Disclosures Paul R. Rhomberg, n/a, Cidara Therapeutics (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)Merck (Research Grant or Support) Shawn A. Messer, PhD, Amplyx Pharmaceuticals (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support) Richard W. Scott, PhD, Fox Chase Chemical Diversity Center (Employee) Simon DP Baugh, PhD, Fox Chase Chemical Diversity Center (Employee) Michael A. Pfaller, MD, Amplyx Pharmaceuticals (Research Grant or Support)Basilea Pharmaceutica International, Ltd (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support) Mariana Castanheira, PhD, 1928 Diagnostics (Research Grant or Support)A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Allergan (Research Grant or Support)Amplyx Pharmaceuticals (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Paratek Pharma, LLC (Research Grant or Support)Pfizer (Research Grant or Support)Qpex Biopharma (Research Grant or Support) Cecilia G. Carvalhaes, MD, PhD, A. Menarini Industrie Farmaceutiche Riunite S.R.L. (Research Grant or Support)Allergan (Research Grant or Support)Cidara Therapeutics (Research Grant or Support)Cipla Ltd. (Research Grant or Support)Fox Chase Chemical Diversity Center (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Merck (Research Grant or Support)Merck (Research Grant or Support)Merck & Co, Inc. (Research Grant or Support)Pfizer (Research Grant or Support)


2001 ◽  
Vol 6 (1) ◽  
pp. 19-28 ◽  
Author(s):  
David Shewan ◽  
Margaret Reid ◽  
Sandy MacPherson ◽  
John B. Davies ◽  
Judy Greenwood

Sign in / Sign up

Export Citation Format

Share Document