Optimal control of large-scale singular linear systems via hierarchical strategy

2018 ◽  
Vol 41 (8) ◽  
pp. 2250-2267 ◽  
Author(s):  
Iman Zamani ◽  
Masoud Shafiee ◽  
Mohsen Shafieirad ◽  
Mahdi Zeinali

This paper states a hierarchical strategy of large-scale singular linear system in which the system is composed of J singular linear subsystems with interconnections. Among hierarchical strategies, the two-level optimization conditions based on Interaction Prediction Method (IPM) are derived such that whole large-scale singular system is optimized. Based on the two-level coordination method, the optimization analysis and controller design of large-scale singular linear system is discussed. For this purpose, two decentralized nonlinear state feedback controllers are designed for each subsystem, such that the whole closed-loop linear system is optimized. These conditions are used to extract two IPM algorithms. Then, by using both algorithms, two numerical examples are given to confirm the analytical results and illustrate the effectiveness of the proposed method.


The chapter addresses the stabilization problem for large-scale fuzzy interconnected systems. Our aim is to present the design results on both the state feedback and static-output feedback (SOF) stabilizing fuzzy controllers. Firstly, by using some bounding techniques, the reduced number of LMIs to the decentralized state feedback controller design will be derived. Then, by using some matrix transformation techniques and singular system approach, we will also derive some design results on decentralized SOF control in terms of LMIs. Moreover, the proposed design results on the decentralized control will be extended to address the distributed control problem. Finally, several examples are given to illustrate the use of corresponding results.



2021 ◽  
Vol 13 (3) ◽  
pp. 1251
Author(s):  
Yichi Zhang ◽  
Zhiliang Dong ◽  
Sen Liu ◽  
Peixiang Jiang ◽  
Cuizhi Zhang ◽  
...  

As the raw material of lithium-ion batteries, lithium carbonate plays an important role in the development of new energy field. Due to the extremely uneven distribution of lithium resources in the world, the security of supply in countries with less say would be greatly threatened if trade restrictions or other accidents occurred in large-scale exporting countries. It is of great significance to help these countries find new partners based on the existing trade topology. This study uses the link prediction method, based on the perspective of the topological structure of trade networks in various countries and trade rules, and eliminates the influence of large-scale lithium carbonate exporting countries on the lithium carbonate trade of other countries, to find potential lithium carbonate trade links among importing and small-scale exporting countries, and summarizes three trade rules: (1) in potential relationships involving two net importers, a relationship involving either China or the Netherlands is more likely to occur; (2) for all potential relationships, a relationship that actually occurred for more than two years in the period in 2009–2018 is more likely to occur in the future; and (3) potential relationships pairing a net exporter with a net importer are more likely to occur than other country combinations. The results show that over the next five to six years, Denmark and Italy, Netherlands and South Africa, Turkey and USA are most likely to have a lithium carbonate trading relationship, while Slovenia and USA, and Belgium and Thailand are the least likely to trade lithium carbonate. Through this study, we can strengthen the supply security of lithium carbonate resources in international trade, and provide international trade policy recommendations for the governments of importing countries and small-scale exporting countries.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Hossein Jafari ◽  
Amir Mahdi Abdolhosseini-Qomi ◽  
Masoud Asadpour ◽  
Maseud Rahgozar ◽  
Naser Yazdani

AbstractThe entities of real-world networks are connected via different types of connections (i.e., layers). The task of link prediction in multiplex networks is about finding missing connections based on both intra-layer and inter-layer correlations. Our observations confirm that in a wide range of real-world multiplex networks, from social to biological and technological, a positive correlation exists between connection probability in one layer and similarity in other layers. Accordingly, a similarity-based automatic general-purpose multiplex link prediction method—SimBins—is devised that quantifies the amount of connection uncertainty based on observed inter-layer correlations in a multiplex network. Moreover, SimBins enhances the prediction quality in the target layer by incorporating the effect of link overlap across layers. Applying SimBins to various datasets from diverse domains, our findings indicate that SimBins outperforms the compared methods (both baseline and state-of-the-art methods) in most instances when predicting links. Furthermore, it is discussed that SimBins imposes minor computational overhead to the base similarity measures making it a potentially fast method, suitable for large-scale multiplex networks.



2017 ◽  
Vol 18 (10) ◽  
pp. 1624-1634 ◽  
Author(s):  
Xiong-bin Peng ◽  
Guo-fang Gong ◽  
Hua-yong Yang ◽  
Hai-yang Lou ◽  
Wei-qiang Wu ◽  
...  




Author(s):  
M. W. Benner ◽  
S. A. Sjolander ◽  
S. H. Moustapha

This paper presents experimental results of the secondary flows from two large-scale, low-speed, linear turbine cascades for which the incidence was varied. The aerofoils for the two cascades were designed for the same inlet and outlet conditions and differed mainly in their leading-edge geometries. Detailed flow field measurements were made upstream and downstream of the cascades and static pressure distributions were measured on the blade surfaces for three different values of incidence: 0, +10 and +20 degrees. The results from this experiment indicate that the strength of the passage vortex does not continue to increase with incidence, as would be expected from inviscid flow theory. The streamwise acceleration within the aerofoil passage seems to play an important role in influencing the strength of the vortex. The most recent off-design secondary loss correlation (Moustapha et al. [1]) includes leading-edge diameter as an influential correlating parameter. The correlation predicts that the secondary losses for the aerofoil with the larger leading-edge diameter are lower at off-design incidence; however, the opposite is observed experimentally. The loss results at high positive incidence have also high-lighted some serious shortcomings with the conventional method of loss decomposition. An empirical prediction method for secondary losses has been developed and will be presented in a subsequent paper.





2021 ◽  
Vol 20 ◽  
pp. 257-263
Author(s):  
Altug Iftar

Decentralized controller design using overlapping decompositions is considered for descriptor-type systems with distributed time-delay. The approach is based on the principle of extension. In this approach, a given large-scale system is decomposed overlappingly into a number of subsystems and expanded such that the overlapping parts appear as disjoint. A decentralized controller is then designed for the expanded system. This controller is then contracted for implementation on the original system. It is shown that if the decentralized controllers are designed to stabilize the expanded system and to achieve certain performance, then the contracted controller, which would have an overlapping decentralized structure, will stabilize the original system and will achieve corresponding performance



Sign in / Sign up

Export Citation Format

Share Document