Event-triggered fault tolerant control for a class of state saturated systems subject to deception attacks

2020 ◽  
Vol 42 (11) ◽  
pp. 1935-1945
Author(s):  
Yi Gao ◽  
Yunji Li ◽  
Li Peng

This study is concerned with event-triggered fault tolerant control for a class of state-saturated systems subject to stochastic faults, unknown but bounded disturbances and deception attacks. After formulating stochastic faults, state saturations, and deception attacks, a hybrid system model is developed to facilitate analysis and design. An event-triggered transmission mechanism is proposed to decide whether the measurement values should be sent to the controller via wireless network. Since the sensor data is attacked by the adversary during the transmission, the actual measurement value received by the controller needs to be recalculated. Expressions of the dynamic output feedback controller are presented, and criteria are used to design a dynamic feedback controller to ensure that the system is uniformly ultimately bounded. To deal with the current problem, an algorithm is also developed and tested using the linear matrix inequality (LMI) toolbox. Finally, two numerical examples are given to illustrate the validity and effectiveness of the proposed strategies.

2017 ◽  
Vol 11 (1) ◽  
pp. 68-86 ◽  
Author(s):  
Jun Wang ◽  
Xiaowan Yao ◽  
Wei Li

In this paper, the authors aimed to analyze uncertain nonlinear networked control systems (NCS) under discrete event-triggered communication scheme (DETCS), in which an integrated design methodology between robust fault detection observer and active fault-tolerant controller is proposed. Moreover, the problem of hybrid active–passive robust fault-tolerant control, which integrated passive fault-tolerant control, fault detection, and controller reconstruction, is researched. In consideration of the impact of uncertainties and network-induced delay on system performance, a new class of uncertain nonlinear NCS fault model is established based on T-S fuzzy model. By employing Lyapunov stability theory, H∞ control theory, and linear matrix inequality method, the fault detection observer and hybrid fault-tolerant controller are both appropriately designed. In addition, the sufficient condition that guaranteed the asymptotically robust stability of nonlinear NCS against any actuator failures is deduced. Finally, a numerical simulation is provided to show the effectiveness of the proposed methods.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 598 ◽  
Author(s):  
Chenglong Zhu ◽  
Chenxi Li ◽  
Xinyi Chen ◽  
Kanjian Zhang ◽  
Xin Xin ◽  
...  

This paper considers an adaptive fault-tolerant control problem for a class of uncertain strict feedback nonlinear systems, in which the actuator has an unknown drift fault and the loss of effectiveness fault. Based on the event-triggered theory, the adaptive backstepping technique, and Lyapunov theory, a novel fault-tolerant control strategy is presented. It is shown that an appropriate comprise between the control performance and the sensor data real-time transmission consumption is made, and the fault-tolerant tracking control problem of the strict feedback nonlinear system with uncertain and unknown control direction is solved. The adaptive backstepping method is introduced to compensate the actuator faults. Moreover, a new adjustable event-triggered rule is designed to determine the sampling state instants. The overall control strategy guarantees that the output signal tracks the reference signal, and all the signals of the closed-loop systems are convergent. Finally, the fan speed control system is constructed to demonstrate the validity of the proposed strategy and the application of the general systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Dan Ma ◽  
Junxian Han ◽  
Dali Zhang ◽  
Yanjun Liu

This paper presents a co-design method of the event generator and the dynamic output feedback controller for a linear time-invariant (LIT) system. The event-triggered condition on the sensor-to-controller and the controller-to-actuator depends on the plant output and the controller output, respectively. A sufficient condition on the existence of the event generator and the dynamic output feedback controller is proposed and the co-design problem can be converted into the feasibility of linear matrix inequalities (LMIs). The LTI system is asymptotically stable under the proposed event-triggered controller and also reduces the computing resources with respect to the time-triggered one. In the end, a numerical example is given to illustrate the effectiveness of the proposed approach.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan-Hua Ma ◽  
Xian Du ◽  
Lin-Feng Gou ◽  
Si-Xin Wen

AbstractIn this paper, an active fault-tolerant control (FTC) scheme for turbofan engines subject to simultaneous multiplicative and additive actuator faults under disturbances is proposed. First, a state error feedback controller is designed based on interval observer as the nominal controller in order to achieve the model reference rotary speed tracking control for the fault-free turbofan engine under disturbances. Subsequently, a virtual actuator based reconfiguration block is developed aiming at preserving the consistent performance in spite of the occurrence of the simultaneous multiplicative and additive actuator faults. Moreover, to improve the performance of the FTC system, the interval observer is slightly modified without reconstruction of the state error feedback controller. And a theoretical sufficiency criterion is provided to ensure the stability of the proposed active FTC system. Simulation results on a turbofan engine indicate that the proposed active FCT scheme is effective despite of the existence of actuator faults and disturbances.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 89 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

With the rapid development of computer science and information and communication technology (ICT), increasingly intelligent, and complex systems have been applied to industries as well as human life. Fault-tolerant control (FTC) has, therefore, become one of the most important topics attracting attention from both engineers and researchers to maintain system performances when faults occur. The ultimate goal of this study was to develop a sensor fault-tolerant control (SFTC) to enhance the robust position tracking control of a class of electro-hydraulic actuators called mini motion packages (MMPs), which are widely used for applications requiring large force-displacement ratios. First, a mathematical model of the MMP system is presented, which is then applied in the position control process of the MMP system. Here, a well-known proportional, integrated and derivative (PID) control algorithm is employed to ensure the positional response to the reference position. Second, an unknown input observer (UIO) is designed to estimate the state vector and sensor faults using a linear matrix inequality (LMI) optimization algorithm. Then an SFTC is used to deal with sensor faults of the MMP system. The SFTC is formed of the fault detection and the fault compensation with the goal of determining the location, time of occurrence, and magnitude of the faults in the fault signal compensation process. Finally, numerical simulations were run to demonstrate the superior performance of the proposed approach compared to traditional tracking control.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Atif Mahmood ◽  
Abdul Qayyum Khan ◽  
Ghulam Mustafa ◽  
Nasim Ullah ◽  
Muhammad Abid ◽  
...  

We design a remote fault-tolerant control for an industrial surveillance system. The designed controller simultaneously tolerates the effects of local faults of a node, the propagated undesired effects of neighboring connected nodes, and the effects of network-induced uncertainties from a remote location. The uncertain network-induced time delays of communication links from the sensor to the controller and from the controller to the actuator are modeled using two separate Markov chains and packet dropouts using the Bernoulli process. Based on linear matrix inequalities, we derive sufficient conditions for output feedback-based control law, such that the controller does not directly depend on output, for stochastic stability of the system. The simulation study shows the effectiveness of the proposed approach.


Author(s):  
Mickael Rodrigues ◽  
Didier Theilliol ◽  
Samir Aberkane ◽  
Dominique Sauter

Fault Tolerant Control Design For Polytopic LPV SystemsThis paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.


Sign in / Sign up

Export Citation Format

Share Document