Observer-based event-triggered H∞ control for asynchronous switched delay systems

2020 ◽  
Vol 42 (12) ◽  
pp. 2254-2261
Author(s):  
Yang Yang ◽  
Baowei Wu ◽  
Yue-E Wang ◽  
Lili Liu

In this paper, the [Formula: see text] performance of observer-based asynchronous linear switched delay systems with an event-triggered sampling scheme is considered. Firstly, owing to the system state cannot be measured completely in practice, a state feedback observer is used to reconstruct the system state. Next, we design an event-triggered sampling mechanism, under which the sample of the system only occur when the error exceeds a predetermined threshold, so it will reduce economic losses. Then, considering the asynchronous switching between the subsystems and the controllers, some sufficient conditions are proposed by using merging switching signal method and multiple Lyapunov function method to ensure the [Formula: see text] performance of the asynchronous closed-loop system. Finally, a numerical example is given to illustrate the validity of the results.

2014 ◽  
Vol 945-949 ◽  
pp. 2539-2542
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

For the non-measurable states, a control of switched fuzzy systems is presented based on observer. Using switching technique and multiple Lyapunov function method, the fuzzy observer is built to ensure that for all allowable external disturbance the relevant closed-loop system is asymptotically stable. Moreover, switching strategy achieving system global asymptotic stability of the switched fuzzy system is given. In this model, a switching state feedback controller is presented. A simulation shows the feasibility and the effectiveness of the method.


2019 ◽  
Vol 37 (3) ◽  
pp. 918-934
Author(s):  
Jing Bai ◽  
Ying Wang ◽  
Li-Ying Zhao

Abstract This paper is concerned with the discrete event-triggered dynamic output-feedback ${H}_{\infty }$ control problem for the uncertain networked control system, where the time-varying sampling, network-induced delay and packet losses are taken into account simultaneously. The random packet losses are described via the Bernoulli distribution. And then, the closed-loop system is modelled as an augmented time-delay system with interval time-varying delay. By using the Lyapunov stability theory and the augmented state space method, the sufficient conditions for the asymptotic stability of the closed-loop system are proposed in the form of linear matrix inequalities. At the same time, the design method of the ${H}_{\infty }$ controller is created. Finally, a numerical example is employed to illustrate the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Wen-Chiung Hsu ◽  
Lian-Wang Lee ◽  
Kuan-Hsuan Tseng ◽  
Chien-Yu Lu ◽  
Chin-Wen Liao ◽  
...  

This paper investigates the feedback control for networked discrete-time finite-distributed delays with quantization and packet dropout, and systems induce theH∞control problem. The compensation scheme occurs in a random way. The quantization of system state or output signal is in front of being communicated. It is shown that the design of both a state feedback controller and an observer-based output feedback controller can be achieved, which ensure the asymptotical stability as well as a prescribedH∞performance of the resulting closed-loop system satisfying dependence on the size of the discrete and distributed delays. Numerical examples are given to illustrate the effectiveness and applicability of the design method in this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Huiying Chen ◽  
Dongqin Xu ◽  
Zuxin Li ◽  
Yanfeng Wang

The H∞ state feedback control problem for a class of nonlinear networked control systems with data packet loss is studied using an event-triggered scheme. The data packet loss is described as an independent and homogeneous Bernoulli process. Under an event-triggered scheme, the nonlinear networked control system with packet loss is modeled as a Takagi-Sugeno (T-S) fuzzy system, based on which sufficient conditions on the existence of event-triggered state feedback controllers are derived such that the closed-loop system is mean-square stable with a desired H∞ performance index. The simulation results show that the presented event-triggered scheme can not only ensure the closed-loop performance but also effectively reduce the data transmission rate.


Author(s):  
Li Yang ◽  
Xinzhi Liu ◽  
Zhigang Zhang

This paper studies the problem of exponentially dissipative control for singular impulsive dynamical systems. Some necessary and sufficient conditions for exponential dissipativity of such systems are established in terms of linear matrix inequalities (LMIs). A state feedback controller is designed to make the closed-loop system exponentially dissipative. A numerical example is given to illustrate the feasibility of the method.


2008 ◽  
Vol 2008 ◽  
pp. 1-11
Author(s):  
Rui Vilela Dionísio ◽  
João M. Lemos

This paper presents sufficient conditions for stability of unstable discrete time invariant models, stabilized by state feedback, when interrupted observations due to intermittent sensor faults occur. It is shown that the closed-loop system with feedback through a reconstructed signal, when, at least, one of the sensors is unavailable, remains stable, provided that the intervals of unavailability satisfy a certain time bound, even in the presence of state vanishing perturbations. The result is first proved for linear systems and then extended to a class of Hammerstein systems.


2018 ◽  
Vol 189 ◽  
pp. 10027
Author(s):  
Keylan Alimhan ◽  
Naohisa Otsuka ◽  
M.N. Kalimoldayev ◽  
N. Tasbolat

In this paper, the problem of global practical output tracking is investigated by state feedback for a class of uncertain nonlinear time-delay systems. Under mild conditions on the system nonlinearities involving time delay, we construct a homogeneous state feedback controller with an adjustable scaling gain. By a homogeneous Lyapunov-Krasovskii functional, the scaling gain is adjusted to dominate the time-delay nonlinearities bounded by homogeneous growth conditions and render the tracking error can be made arbitrarily small while all the states of the closed-loop system remain to be bounded.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Xiaoming Chen ◽  
Mou Chen ◽  
Jun Shen

The problem ofl1-induced state-feedback controller design is investigated for positive Takagi-Sugeno (T-S) fuzzy systems with the use of linear Lyapunov function. First, a novel performance characterization is established to guarantee the asymptotic stability of the closed-loop system withl1-induced performance. Then, the sufficient conditions are presented to design the required fuzzy controllers and iterative convex optimization approaches are developed to solve the conditions. Finally, one example is presented to show the effectiveness of the derived theoretical results.


Author(s):  
Li Li ◽  
Xiao Yu

In this paper, the preview tracking control problem for Lipschitz nonlinear system, where future reference signals over a finite horizon can be previewed. First, an augmented error system including previewed information is constructed, which transforms a preview tracking control problem into a regulation problem. Furthermore, sufficient conditions on polytopic nonlinear systems, which guarantee the corresponding closed-loop system to be asymptotically stable, are derived by employing parameter-dependent Lyapunov function. A linear matrix inequality approach for designing preview controllers in state feedback and output feedback settings is presented. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed approach.


2018 ◽  
Vol 41 (1) ◽  
pp. 14-22 ◽  
Author(s):  
NA Baleghi ◽  
MH Shafiei

This paper studies the stabilization problem of discrete-time switched systems in the presence of a time-varying delay and parametric uncertainties. The main goal is to provide a state feedback controller to guarantee the stability of the closed-loop system with an evaluated average dwell time. In this regard, an appropriate Lyapunov–Krasovskii functional is constructed and the sufficient conditions for stability of the closed-loop system are developed in terms of feasibility testing of proposed linear matrix inequalities. These conditions only depend on the upper bounds of the time delay and uncertain parameters. Additionally, a numerical example is provided to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document