Design of a stabilizing controller for discrete-time switched delay systems with affine parametric uncertainties

2018 ◽  
Vol 41 (1) ◽  
pp. 14-22 ◽  
Author(s):  
NA Baleghi ◽  
MH Shafiei

This paper studies the stabilization problem of discrete-time switched systems in the presence of a time-varying delay and parametric uncertainties. The main goal is to provide a state feedback controller to guarantee the stability of the closed-loop system with an evaluated average dwell time. In this regard, an appropriate Lyapunov–Krasovskii functional is constructed and the sufficient conditions for stability of the closed-loop system are developed in terms of feasibility testing of proposed linear matrix inequalities. These conditions only depend on the upper bounds of the time delay and uncertain parameters. Additionally, a numerical example is provided to verify the theoretical results.

2019 ◽  
Vol 37 (3) ◽  
pp. 918-934
Author(s):  
Jing Bai ◽  
Ying Wang ◽  
Li-Ying Zhao

Abstract This paper is concerned with the discrete event-triggered dynamic output-feedback ${H}_{\infty }$ control problem for the uncertain networked control system, where the time-varying sampling, network-induced delay and packet losses are taken into account simultaneously. The random packet losses are described via the Bernoulli distribution. And then, the closed-loop system is modelled as an augmented time-delay system with interval time-varying delay. By using the Lyapunov stability theory and the augmented state space method, the sufficient conditions for the asymptotic stability of the closed-loop system are proposed in the form of linear matrix inequalities. At the same time, the design method of the ${H}_{\infty }$ controller is created. Finally, a numerical example is employed to illustrate the effectiveness of the proposed method.


2016 ◽  
Vol 24 (4) ◽  
pp. 722-738 ◽  
Author(s):  
Atta Oveisi ◽  
Tamara Nestorović

A robust nonfragile observer-based controller for a linear time-invariant system with structured uncertainty is introduced. The [Formula: see text] robust stability of the closed-loop system is guaranteed by use of the Lyapunov theorem in the presence of undesirable disturbance. For the sake of addressing the fragility problem, independent sets of time-dependent gain-uncertainties are assumed to be existing for the controller and the observer elements. In order to satisfy the arbitrary H2-normed constraints for the control system and to enable automatic determination of the optimal [Formula: see text] bound of the performance functions in disturbance rejection control, additional necessary and sufficient conditions are presented in a linear matrix equality/inequality framework. The [Formula: see text] observer-based controller is then transformed into an optimization problem of coupled set of linear matrix equalities/inequality that can be solved iteratively by use of numerical software such as Scilab. Finally, concerning the evaluation of the performance of the controller, the control system is implemented in real time on a mechanical system, aiming at vibration suppression. The plant under study is a multi-input single-output clamped-free piezo-laminated smart beam. The nominal mathematical reduced-order model of the beam with piezo-actuators is used to design the proposed controller and then the control system is implemented experimentally on the full-order real-time system. The results show that the closed-loop system has a robust performance in rejecting the disturbance in the presence of the structured uncertainty and in the presence of the unmodeled dynamics.


2021 ◽  
Vol 20 ◽  
pp. 88-97
Author(s):  
Mengying Ding ◽  
Yali Dong

This paper investigates the problem of robust H∞ observer-based control for a class of discrete-time nonlinear systems with time-varying delays and parameters uncertainties. We propose an observer-based controller. By constructing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are developed to ensure the closed-loop system is robust asymptotically stable with H∞ performance in terms of the linear matrix inequalities. Finally, a numerical example is given to illustrate the efficiency of proposed methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Honglei Xu ◽  
Xiang Xie ◽  
Lilian Shi

We study theL2-gain analysis problem for a class of discrete-time switched systems with time-varying delays. A mode-dependent average dwell time (MDADT) approach is applied to analyze theL2-gain performance for these discrete-time switched delay systems. Combining a multiple Lyapunov functional method with the MDADT approach, sufficient conditions expressed in form of a set of feasible linear matrix inequalities (LMIs) are established to guarantee theL2-gain performance. Finally, a numerical example will be provided to demonstrate the validity and usefulness of the obtained results.


Author(s):  
Masoumeh Esfandiari ◽  
Nariman Sepehri

In this paper, a robust fixed-gain linear output pressure controller is designed for a double-rod electrohydrostatic actuator using quantitative feedback theory (QFT). First, the family of frequency responses of the system is identified by applying an advanced form of fast Fourier transform on the open-loop input–output experimental data. This approach results in realistic frequency responses of the system, which prevents the generation of unnecessary large QFT templates, and consequently contributes to the design of a low-order QFT controller. The designed controller provides desired transient responses, desired tracking bandwidth, robust stability, and disturbance rejection for the closed-loop system. Experimental results confirm the desired performance met by the QFT controller. Then, the nonlinear stability of the closed-loop system is analyzed considering the friction and leakage, and in the presence of parametric uncertainties. For this analysis, Takagi–Sugeno (T–S) fuzzy modeling and its stability theory are employed. The T–S fuzzy model is derived for the closed-loop system and the stability conditions are presented as linear matrix inequalities (LMIs). LMIs are found feasible and thus the stability of the closed-loop system is proven for a wide range of parametric uncertainties and in the presence of friction and leakages.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng-Fan Liu ◽  
Chen-Xiao Cai ◽  
Wen-Yong Duan

This paper is concerned with the problem of exponential stability andH∞model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF) approach, sufficient conditions for exponential stability withH∞performance of such systems are derived in terms of linear matrix inequalities (LMIs). For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and anH∞error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hua-Feng He ◽  
Guang-Bin Cai ◽  
Xiao-Jun Han

The problem of state feedback optimal pole assignment is to design a feedback gain such that the closed-loop system has desired eigenvalues and such that certain quadratic performance index is minimized. Optimal pole assignment controller can guarantee both good dynamic response and well robustness properties of the closed-loop system. With the help of a class of linear matrix equations, necessary and sufficient conditions for the existence of a solution to the optimal pole assignment problem are proposed in this paper. By properly choosing the free parameters in the parametric solutions to this class of linear matrix equations, complete solutions to the optimal pole assignment problem can be obtained. A numerical example is used to illustrate the effectiveness of the proposed approach.


Algorithms ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 167
Author(s):  
Danica Rosinová ◽  
Mária Hypiusová

Herein, robust pole placement controller design for linear uncertain discrete time dynamic systems is addressed. The adopted approach uses the so called “D regions” where the closed loop system poles are determined to lie. The discrete time pole regions corresponding to the prescribed damping of the resulting closed loop system are studied. The key issue is to determine the appropriate convex approximation to the originally non-convex discrete-time system pole region, so that numerically efficient robust controller design algorithms based on Linear Matrix Inequalities (LMI) can be used. Several alternatives for relatively simple inner approximations and their corresponding LMI descriptions are presented. The developed LMI region for the prescribed damping can be arbitrarily combined with other LMI pole limitations (e.g., stability degree). Simple algorithms to calculate the matrices for LMI representation of the proposed convex pole regions are provided in a concise way. The results and their use in a robust controller design are illustrated on a case study of a laboratory magnetic levitation system.


Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


1998 ◽  
Vol 120 (3) ◽  
pp. 378-388 ◽  
Author(s):  
F. N. Koumboulis ◽  
B. G. Mertzios

The problem of reducing a multi input-multi output system to many single input-single output systems, namely the problem of input-output decoupling, is studied for the case of singular systems i.e., for systems described by dynamic and algebraic equations. The problem of input-output decoupling with simultaneous arbitrary pole assignment, via proportional plus derivative (P-D) state feedback, is extensively solved. The general explicit expression of all P-D controllers solving the decoupling problem is determined. The general form of the diagonal elements of the decoupled closed-loop system is proven to be in a form having a fixed numerator polynomial and an arbitrary denominator polynomial. The necessary and sufficient conditions for the solvability of the problem of decoupling with simultaneous asymptotic stabilizability or arbitrary pole assignment are established. Furthermore, the necessary and sufficient conditions for decoupling with simultaneous impulse elimination, as well as the necessary and sufficient conditions for decoupling with arbitrary assignment of the finite and infinite poles of the closed-loop system, are established.


Sign in / Sign up

Export Citation Format

Share Document