Residential buildings with brain-computer interface functionality: An elevator case study

Author(s):  
Iraklis Chatziparasidis ◽  
Ioanna K Sfampa

Brain–computer interfaces (BCI) are systems that use signals recorded from the brain to enable communication and control applications. One of the most important applications of BCI technology is that enables people who are severely paralyzed by amyotrophic lateral sclerosis, brainstem stroke, or other disorders to communicate, operate computer programs, or even control numerous devices. Moreover, elevators are probably the best option for disabled persons to expand their access and mobility within a house or a building. In this study, a prototype application is presented, together with an experimental setup of a BCI system that attempts to control an elevator. Practical application Many researchers are dealing with BCI systems that give the possibility to disabled people to control a variety of devices from wheelchairs to different home appliances, using the signals of their brain and forming a smart home services framework. This work comes to support this effort by presenting a case study, as a proof of concept, for an elevator BCI system that could be part of a complete “smart” home BCI system. The presented experimental setup proves that elevators with BCI functionalities are practically feasible and in an affordable cost, and that they could be a significant element within a “smart” residential building.

2018 ◽  
Vol 166 ◽  
pp. 258-270 ◽  
Author(s):  
Anastasia Fotopoulou ◽  
Giovanni Semprini ◽  
Elena Cattani ◽  
Yves Schihin ◽  
Julian Weyer ◽  
...  

2019 ◽  
Vol 11 (8) ◽  
pp. 2195 ◽  
Author(s):  
Chen-Yi Sun ◽  
Yin-Guang Chen ◽  
Rong-Jing Wang ◽  
Shih-Chi Lo ◽  
Jyh-Tyng Yau ◽  
...  

The green building certification system of Taiwan, EEWH (Ecology, Energy Saving, Waste Reduction and Health), has been in operation for more than 20 years (since 1999). In order to understand the relationship between green building certification and the construction costs of residential buildings, this study obtained 37 green building-certified residential cases and 36 general residential cases available from public information and conducted a comparative analysis. The results of this study showed that the average construction cost of a green building certification residential building was only 1.58% higher than a general residential building, indicating that green building certification does not require a large increase in costs. However, for residential buildings, achieving a high-grade (gold-grade or diamond-grade) green building certification means an increase of 6.7% to 9.3% in construction costs. This shows that the pursuit of higher levels of green building certification does require higher construction costs. In addition, the results of this study can not only provide important references for the government in making green building policies, but also offer a practical strategy for developers for decision-making.


2014 ◽  
Vol 14 (11) ◽  
pp. 3015-3030 ◽  
Author(s):  
I. Cantarino ◽  
F. J. Torrijo ◽  
S. Palencia ◽  
E. Gielen

Abstract. This paper proposes a method of valuing the stock of residential buildings in Spain as the first step in assessing possible damage caused to them by natural hazards. For the purposes of the study we had access to the SIOSE (the Spanish Land Use and Cover Information System), a high-resolution land-use model, as well as to a report on the financial valuations of this type of building throughout Spain. Using dasymetric disaggregation processes and GIS techniques we developed a geolocalized method of obtaining this information, which was the exposure variable in the general risk assessment formula. Then, with the application over a hazard map, the risk value can be easily obtained. An example of its application is given in a case study that assesses the risk of a landslide in the entire 23 200 km2 of the Valencia Autonomous Community (NUT2), the results of which are analysed by municipal areas (LAU2) for the years 2005 and 2009.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5162
Author(s):  
Bartosz Radomski ◽  
Tomasz Mróz

The article presents the results of the application of an original methodology for designing residential buildings with a positive energy balance in accordance with the principles of sustainable development. The methodology was verified using a computational example involving the selection of a compromise solution for a single-family residential building with a positive energy balance located in Warsaw, Poland. Three different models of decision-makers’ preferences were created, taking into account selected decision sub-criteria. Three technical solutions were identified, permissible according to the principles and guidelines for designing buildings with a positive energy balance. As a result of the performed calculations, the final order of the analyzed variants was obtained, from the most preferred to the least accepted solution. Variant 2 is definitely the most advantageous solution, being the best in a group of 20 to 26 evaluation sub-criteria—depending on the adopted model of the decision-maker’s preferences. Its ranking index Ri ranged from 0.773 to 0.764, while for the other variants it was much lower and varied from 0.258 to 0.268 for variant 1, and from 0.208 to 0.226 for variant 3. The methodology used for the case study proved to be applicable. The developed methodology facilitates the process of designing residential buildings with a positive energy balance, which is an extremely complex process.


2021 ◽  
Vol 16 (3) ◽  
pp. 87-108
Author(s):  
Nadeeka Jayaweera ◽  
Upendra Rajapaksha ◽  
Inoka Manthilake

ABSTRACT This study examines the daylight and energy performance of 27 external shading scenarios in a high-rise residential building in the urban tropics. The cooling energy, daytime lighting energy and the spatial daylight autonomy (sDA) of the building model were simulated in Rhino3D and Grasshopper simulation software. The best performance scenario (vertical and horizontal shading on the twentieth floor, horizontal shading only for the eleventh floor and no shading for the second floor) satisfied 75 sDA(300lx|50) with corresponding annual enery performance of 16%–20% in the cardinal directions. The baseline scenario, which is the current practice of providing balconies on all floors, reduced daylight to less than 75 sDA on the eleventh and second floor, even though it had higher annual enery performance (19%–24%) than the best performance scenario. Application of the design principles to a case study indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in enery performance of 1%–3% was found in the Best performance scenario compared to the Baseline.


Author(s):  
Atanes Papoyan ◽  
Changhong Zhan ◽  
Xueying Han ◽  
Guanghao Li

Abstract In this article the research is concentrated on defining the possibility and potentials of design to enhance the energy efficiency and refine the climate conditions in the existing residential buildings in Armenia. The digital model of existing residential building is used to calculate the annual energy consumption, by simulation software—Autodesk Green Building Student. The horizontal solar panel systems offered by local market leaders were applied to calculate the annual savings, the required installation area, prices, etc. Consequently, the actual efficiency of energy saving technological process of residential buildings in Armenia is estimated. Based on the applied strategies and obtained fact, some recommendations are made for residential buildings. This article is intended to help and to be stimulus for architects and constructors to consider and include green technologies in their new projects.


2021 ◽  
Vol 21 (1) ◽  
pp. 39-45
Author(s):  
A. Vasiliu ◽  
Otilia Nedelcu ◽  
I. C. Sălişteanu ◽  
O. Magdun

Abstract The oil crisis, the measures taken because of global warming caused by greenhouse gas emissions, the ecological actions carried out globally and the technical progress in the fields of electronics, energy, IT and telecommunications have led to the emergence Passive House concepts in the construction sector, of Passive Solar Building (passive construction based on solar energy), of Net Zero-Energy Building NZEB, of Plus Energy Building, of nearly Zero Energy Building nZEB, of Low-Energy Building, of Green House, of Zero Carbon House, of Smart House, of Healthy buildings and other equivalents or derivatives. In this paper, these concepts will be cross-debated and the measures adopted at EU level and the influences exerted on the Romanian legislation on the field of civil and residential constructions will be presented. Based on a case study, a residential construction will be characterized, representative of the current housing stock, in order to assess the degree of compliance with the minimum requirements of a house with low energy consumption, imposed by Romanian legislation in the field.


2004 ◽  
Vol 16 (06) ◽  
pp. 344-349 ◽  
Author(s):  
MU-CHUN SU ◽  
YANG-HAN LEE ◽  
CHENG-HUI WU ◽  
SHI-YONG SU ◽  
YU-XIANG ZHAO

The object of this paper is to present a set of techniques integrated into two low-cost human computer interfaces. Although the interfaces have many potential applications, one main application is to help the disabled persons to attain or regain some degree of independent communications and control. The first interface is a voice-controlled mouse and the second one is an accelerometer-based mouse.


Author(s):  
Daniela Koppelhuber ◽  
Johannes Wall

More than 95% of multi-story residential buildings in Austria are currently predominantly constructed with conventional mineral construction materials. This fact combined with the increasing demands for a healthy residential living atmosphere demonstrates the great potential for using ecological materials. Life cycle assessments provide information on the ecological performance of buildings, but the corresponding economical aspects are not considered. Nevertheless, the economic aspects of a certain draft are important to clients and designers. Therefore, simplified assessment-tools are needed that take into account the ecological impact as well as the building costs. This paper presents the results of an investigation supplemented by a case study of a multistory residential building, which was finished 2016 in Austria, illustrating the differences between the state-of-the-art material selection and ecologically optimized alternatives. The ecological impacts and the costs for the selected building-system were determined based on the case study. Subsequently, ecological optimization potentials were identified according to the environmental indicator OI3. Finally, the effects on component and construction costs were evaluated. The steps of this simplified process reveal the interdependency between ecological aspects and the costs of materials. This procedure represents a decision-making tool that can be used by clients as well as designers. The results of this research emphasize the large environmental impact improvements with little expenses when implementing sustainability in multi-story residential buildings as a crucial part of a green design.


Sign in / Sign up

Export Citation Format

Share Document