Behavior of Arterial Grafts at the Hip and Knee Joints

1982 ◽  
Vol 4 (1) ◽  
pp. 83-91 ◽  
Author(s):  
P. C. Clifford ◽  
R. Skidmore ◽  
J. P. Woodcock ◽  
R. N. Baird

Real time ultrasonic scanning with a Duplex scanner (A.T.L.) was used to study Dacron arterial grafts crossing the hip and knee joints in 27 patients (25 males, 2 females), mean age 61 years. Ultrasonic imaging of the grafts was rapid and demonstrated kinking during knee flexion in 83 percent of grafts anastomosed to the distal popliteal artery. Only 7 percent of grafts crossing the inguinal ligament kinked during 60° of hip flexion. Graft kinking during knee flexion may be a factor in acute thrombosis associated with long periods of immobility, such as during air travel.

Healthcare ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 606
Author(s):  
Abdolhamid Daneshjoo ◽  
Hadi Nobari ◽  
Aref Kalantari ◽  
Mohammadtaghi Amiri-Khorasani ◽  
Hamed Abbasi ◽  
...  

To design an accurate sport injury prevention program, alterations in the knee and hip kinematic variables involved in injury mechanisms should be known. The main purpose of the current study was to compare knee and hip kinematic variables during landing and cutting among male football and futsal players, and to discuss them within an injury description frame. Twenty football (20.5 ± 2.1 years., 74.5 ± 6.9 kg and 1.79 ± 0.07 m) and twenty futsal players (20.3 ± 2.0 years., 73.5 ± 7.1 kg and 1.78 ± 0.07 m), with at least three years’ experience of playing in the Kerman Province League, participated in this study. Hip flexion, knee flexion and knee valgus angle during two main movements with risk of injury, such as landing and cutting, were measured using a motion capture system with passive markers at 120-Hz sampling frequency. Landing and cutting maneuvers were administered in as natural way as possible. Results showed significant differences in landing and cutting maneuvers between groups in hip flexion, knee flexion and knee valgus angle. Results indicated that footballers have less extension of hip and knee joints than futsal players in landing maneuvers, which may be due to the higher requirement of jumping−landing maneuvers when playing football. In cutting maneuvers, footballers showed less hip and knee flexion than futsal players, whereas the knee valgus angle in cutting maneuvers was lower in futsal players. More information on the injury mechanisms of landing and cutting in football and futsal are needed to improve the design of injury prevention programs.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Longfei Cheng ◽  
Caihua Xiong ◽  
Wenbin Chen ◽  
Jiejunyi Liang ◽  
Bo Huang ◽  
...  

Assistive devices are used to reduce human effort during locomotion with increasing success. More assistance strategies are worth exploring, so we aimed to design a lightweight biarticular device with well-chosen parameters to reduce muscle effort. Based on the experience of previous success, we designed an exotendon to assist in swing leg deceleration. Then we conducted experiments to test the performance of the exotendon with different spring stiffness during walking. With the assistance of the exotendon, peak activation of semitendinosus decreased, with the largest reduction of 12.3% achieved with the highest spring stiffness ( p = 0.004). The peak activations of other measured muscles were not significantly different ( p = 0.15–0.92). The biological hip extension and knee flexion moments likewise significantly decreased with the spring stiffness ( p < 0.01). The joint angle was altered during the assisted phases with decreased hip flexion and knee extension. Meanwhile, the step frequency and the step length were also altered, while the step width remained unaffected. Gait variability changed only in the frontal plane, exhibiting lower step width variability. We conclude that passive devices assisting hip extension and knee flexion can significantly reduce the burden on the hamstring muscles, while the kinematics is easily altered.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Kadlec ◽  
Matthew J. Jordan ◽  
Leanne Snyder ◽  
Jacqueline Alderson ◽  
Sophia Nimphius

Abstract Purpose To examine the test re-test reliability of isometric maximal voluntary contractions (MVC) of hip adduction (ADDISO), hip abduction (ABDISO), and multijoint leg extension (SQUATISO) in sub-elite female Australian footballers. Methods Data were collected from 24 sub-elite female Australian footballers (age 22.6 ± 4.5 years; height 169.4 ± 5.5 cm; body mass 66.6 ± 8.0 kg; 4.5 ± 4.4 years sport-specific training; 2.5 ± 2.0 years unstructured resistance training) from the same club on two non-consecutive days. Participants performed three isometric MVCs of ADDISO, ABDISO, and SQUATISO. The SQUATISO was performed at 140° knee flexion with a vertical trunk position and ADDISO and ABDISO measures were performed in a supine position at 60° of knee flexion and 60° hip flexion. Reliability was assessed using paired t tests and the intraclass correlation coefficient (ICC) with 95% confidence intervals (CI), typical error (TE), and coefficient of variation (CV%) with 95% CI. Results SQUATISO peak force (ICC .95; CV% 4.1), ABDISO for left, right, and sum (ICC .90–.92; CV% 5.0–5.7), and ADDISO for left, right, and sum (ICC .86–.91; CV% 6.2–6.9) were deemed acceptably reliable based on predetermined criteria (ICC ≥ .8 and CV% ≤ 10). Conclusion SQUATISO, ABDISO, and ADDISO tests demonstrated acceptable reliability for the assessment of peak force in sub-elite female Australian footballers, suggesting these assessments are suitable for muscle strength testing and monitoring adaptations to training.


Author(s):  
Maximilian Hinz ◽  
Stephanie Geyer ◽  
Felix Winden ◽  
Alexander Braunsperger ◽  
Florian Kreuzpointner ◽  
...  

Abstract Purpose Proximal rectus femoris avulsions (PRFA) are relatively rare injuries that occur predominantly among young soccer players. The aim of this study was to evaluate midterm postoperative results including strength potential via standardized strength measurements after proximal rectus femoris tendon refixation. It was hypothesized that the majority of competitive athletes return to competition (RTC) after refixation of the rectus femoris tendon without significant strength or functional deficits compared to the contralateral side. Methods Patients with an acute (< 6 weeks) PRFA who underwent surgical refixation between 2012 and 2019 with a minimum follow-up of 12 months were evaluated. The outcome measures compiled were the median Tegner Activity Scale (TAS) and mean RTC time frames, Harris Hip Score (HHS), Hip and Groin Outcome Score (HAGOS) subscales, International Hip Outcome Tool-33 (iHOT-33), and Visual Analog Scale (VAS) for pain. In addition, a standardized isometric strength assessment of knee flexion, knee extension, and hip flexion was performed to evaluate the functional result of the injured limb in comparison to the uninjured side. Results Out of 20 patients, 16 (80%) patients were available for final assessment at a mean follow-up of 44.8 ± SD 28.9 months. All patients were male with 87.5% sustaining injuries while playing soccer. The average time interval between trauma and surgery was 18.4 ± 8.5 days. RTC was possible for 14 out of 15 previously competitive athletes (93.3%) at a mean 10.5 ± 3.4 months after trauma. Patients achieved a high level of activity postoperatively with a median (interquartile range) TAS of 9 (7–9) and reported good to excellent outcome scores (HHS: 100 (96–100); HAGOS: symptoms 94.6 (89.3–100), pain 97.5 (92.5–100), function in daily living 100 (95–100), function in sport and recreation 98.4 (87.5–100), participation in physical activities 100 (87.5–100), quality of life 83.1 ± 15.6; iHot-33: 95.1 (81.6–99.8)). No postoperative complications were reported. Range of motion, isometric knee flexion and extension, as well as hip flexion strength levels were not statistically different between the affected and contralateral legs. The majority of patients were “very satisfied” (56.3%) or “satisfied” (37.5%) with the postoperative result and reported little pain (VAS 0 (0–0.5)). Conclusion Surgical treatment of acute PRFA yields excellent postoperative results in a young and highly active cohort. Hip flexion and knee extension strength was restored fully without major surgical complications. Level of evidence Retrospective cohort study; III.


2018 ◽  
Vol 32 (9) ◽  
pp. 810-820 ◽  
Author(s):  
Kendra M. Cherry-Allen ◽  
Matthew A. Statton ◽  
Pablo A. Celnik ◽  
Amy J. Bastian

Background. Gait impairments after stroke arise from dysfunction of one or several features of the walking pattern. Traditional rehabilitation practice focuses on improving one component at a time, which may leave certain features unaddressed or prolong rehabilitation time. Recent work shows that neurologically intact adults can learn multiple movement components simultaneously. Objective. To determine whether a dual-learning paradigm, incorporating 2 distinct motor tasks, can simultaneously improve 2 impaired components of the gait pattern in people posttroke. Methods. Twelve individuals with stroke participated. Participants completed 2 sessions during which they received visual feedback reflecting paretic knee flexion during walking. During the learning phase of the experiment, an unseen offset was applied to this feedback, promoting increased paretic knee flexion. During the first session, this task was performed while walking on a split-belt treadmill intended to improve step length asymmetry. During the second session, it was performed during tied-belt walking. Results. The dual-learning task simultaneously increased paretic knee flexion and decreased step length asymmetry in the majority of people post-stroke. Split-belt treadmill walking did not significantly interfere with joint-angle learning: participants had similar rates and magnitudes of joint-angle learning during both single and dual-learning conditions. Participants also had significant changes in the amount of paretic hip flexion in both single and dual-learning conditions. Conclusions. People with stroke can perform a dual-learning paradigm and change 2 clinically relevant gait impairments in a single session. Long-term studies are needed to determine if this strategy can be used to efficiently and permanently alter multiple gait impairments.


Author(s):  
Ashutosh Tiwari ◽  
Abhijeet Kujur ◽  
Jyoti Kumar ◽  
Deepak Joshi

Abstract Transfemoral amputee often encounters reduced toe clearance resulting in trip-related falls. Swing phase joint angles have been shown to influence the toe clearance therefore, training intervention that targets shaping the swing phase joint angles can potentially enhance toe clearance. The focus of this study was to investigate the effect of the shift in the location of the center of pressure (CoP) during heel strike on modulation of the swing phase joint angles in able-bodied participants (n=6) and transfemoral amputees (n=3). We first developed a real-time CoP-based visual feedback system such that participants could shift the CoP during treadmill walking. Next, the kinematic data were collected during two different walking sessions- baseline (without feedback) and feedback (shifting the CoP anteriorly/posteriorly at heel strike to match the target CoP location). Primary swing phase joint angle adaptations were observed with feedback such that during the mid-swing phase, posterior CoP shift feedback significantly increases (p&lt;0.05) the average hip and knee flexion angle by 11.55 degrees and 11.86 degrees respectively in amputees, whereas a significant increase (p&lt;0.05) in ankle dorsiflexion, hip and knee flexion angle by 3.60 degrees, 3.22 degrees, and 1.27 degrees respectively compared to baseline was observed in able-bodied participants. Moreover, an opposite kinematic adaptation was seen during anterior CoP shift feedback. Overall, results confirm a direct correlation between the CoP shift and the modulation in the swing phase lower limb joint angles.


2020 ◽  
Vol 35 (2) ◽  
pp. 68-72
Author(s):  
Danielle N Jarvis ◽  
Kornelia Kulig

OBJECTIVES: Dancers frequently perform complex jumping skills that involve achieving specific body positions while in the air. An examination of how skilled dancers achieve these aesthetic demands can provide information useful for dance training. The purpose of this study was to examine the temporal coordination of the hip and knee joints during the flight phase of a saut de chat leap, where dancers aim to achieve a split position in the air when the center of mass (COM) reaches peak height. METHODS: Thirty healthy, experienced dancers with 22.5±4.5 years of dance training performed 5 saut de chat leaps. The timing of peak hip and knee joint angles and velocities for the takeoff and leading legs were extracted and compared to the time when COM reached peak height in the leap using a repeated measures ANOVA, with post-hoc comparisons made using paired t-tests. RESULTS: Dancers demonstrated significant differences in timing associated with achieving the split position (main effect p<0.001), with only peak leading leg hip flexion occurring at a similar time to the COM reaching peak height (paired t-test p=0.074). CONCLUSIONS: The results of this study provide insight into coordination patterns used by trained dancers. Trained dancers demonstrate patterns in timing that may be important for successful performance. The hip and knee coordination patterns during flight demonstrate how dancers work to achieve the desired aesthetics of a saut de chat leap. However, it appears that dancers do not reach the full split position at the height of the leap, as would be aesthetically desirable.


Author(s):  
Ihssan S. Masad ◽  
Sami Almashaqbeh ◽  
Othman Smadi ◽  
Mariam Abu Olaim ◽  
Abeer Obeid

The purpose of this work is to investigate the effect of anteriorly-added mass to simulate pregnancy on lower extremities kinematic and lumbar and thoracic angles during stair ascending and descending. 18 healthy females ascended and descended, with and without a pseudo-pregnancy sac of 12 kg (experimental and control groups, respectively), a costume-made wooden staircase while instrumented with 20 reflective markers placed on the lower extremities and the spine. The movements were captured by 12 infrared cameras surrounding the staircase. Tracked position data were exported to MATLAB to calculate the required joints angles. SPSS was used to compare the ascent and descent phases of control group, and to find if there are any significant differences between control and experimental groups in the ascent phase as well as in the descent phase. When comparing the ascent and descent phases of control group, data revealed a higher hip flexion during ascending and greater ankle planter-flexion and dorsiflexion, lumbar, and thoracic angles during descending; however, no significant difference was shown in the knee flexion angle between ascending and descending. Non-pregnant data showed greater maximum hip flexion and ankle dorsiflexion during stair ascending compared to simulated-pregnant group; while ankle planter-flexion, knee flexion, and lumbar angle were greater for simulated-pregnant status. During stair descending, non-pregnant group had greater minimum hip flexion and ankle dorsiflexion compared to simulated pregnant group; while ankle planter-flexion, knee flexion, and maximum hip flexion were greater for simulated-pregnant group. However, the lumbar and thoracic angles were found to be similar for simulated-pregnant and non-pregnant groups during stair descending. In conclusion, the current study revealed important kinematic modifications pregnant women adopt while ascending and descending stairs at their final stage of pregnancy to increase their stability.


Sign in / Sign up

Export Citation Format

Share Document