scholarly journals The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development

2019 ◽  
pp. 019262331988046
Author(s):  
Qingqiu Yang ◽  
Mandi J Lopez

The equine hoof capsule, composed of modified epidermis and dermis, is vital for protecting the third phalanx from forces of locomotion. There are descriptions of laminitis, defined as inflammation of sensitive hoof tissues but recognized as pathologic changes with or without inflammatory mediators, in the earliest records of domesticated horses. Laminitis can range from mild to serious, and signs can be acute, chronic, or transition from acute, severe inflammation to permanently abnormal tissue. Damage within the intricate dermal and epidermal connections of the primary and secondary lamellae is often associated with lifelong changes in hoof growth, repair, and conformation. Decades of research contribute to contemporary standards of care that include systemic and local therapies as well as mechanical hoof support. Despite this, consistent mechanisms to restore healthy tissue formation following a laminitic insult are lacking. Endogenous and exogenous progenitor cell contributions to healthy tissue formation is established for most tissues. There is comparably little information about equine hoof progenitor cells. Equine hoof anatomy, laminitis, and progenitor cells are covered in this review. The potential of progenitor cells to advance in vitro equine hoof tissue models and translate to clinical therapies may significantly improve prevention and treatment of a devastating condition that has afflicted equine companions throughout history.

2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1014-1019 ◽  
Author(s):  
C Carlo-Stella ◽  
M Cazzola ◽  
A Gasner ◽  
G Barosi ◽  
L Dezza ◽  
...  

Myelofibrosis with myeloid metaplasia (MMM) is a chronic myeloproliferative disorder due to clonal expansion of a pluripotent hematopoietic progenitor cell with secondary marrow fibrosis. No definitive treatment has as yet been devised for this condition, which shows a marked variability in clinical course. To evaluate whether excessive hematopoietic progenitor cell proliferation could be controlled by recombinant human interferon alpha (rIFN-alpha) and gamma (rIFN-gamma), we studied the effects of these agents on the in vitro growth of pluripotent and lineage-restricted circulating hematopoietic progenitor cells in 18 patients with MMM. A significant increase in the growth (mean +/- 1 SEM) per milliliter of peripheral blood of CFU-GEMM (594 +/- 253), CFU-Mk (1,033 +/- 410), BFU-E (4,799 +/- 2,020) and CFU- GM (5,438 +/- 2,505) was found in patients as compared with normal controls. Both rIFN-alpha and rIFN-gamma (10 to 10(4) U/mL) produced a significant dose-dependent suppression of CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM growth. Concentrations of rIFN-alpha and rIFN-gamma causing 50% inhibition of colony formation were 37 and 163 U/mL for CFU-GEMM, 16 and 69 U/mL for CFU-Mk, 53 and 146 U/mL for BFU-E, and 36 and 187 U/mL for CFU-GM, respectively. A marked synergistic effect was found between rIFN-alpha and rIFN-gamma: combination of the two agents produced inhibitory effects greater than or equivalent to those of 10- to 100- fold higher concentrations of single agents. These studies (a) confirm that circulating hematopoietic progenitors are markedly increased in MMM, (b) indicate that these presumably abnormal progenitors are normally responsive to rIFNs in vitro, and (c) show that IFNs act in a synergistic manner when used in combination. Because rIFN-gamma can downregulate collagen synthesis in vivo, this lymphokine could be particularly useful in the treatment of patients with MMM.


2019 ◽  
Vol 116 (45) ◽  
pp. 22754-22763 ◽  
Author(s):  
Teresa G. Krieger ◽  
Carla M. Moran ◽  
Alberto Frangini ◽  
W. Edward Visser ◽  
Erik Schoenmakers ◽  
...  

Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell–cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro.


Blood ◽  
2008 ◽  
Vol 111 (10) ◽  
pp. 4934-4943 ◽  
Author(s):  
Asaf Spiegel ◽  
Eyal Zcharia ◽  
Yaron Vagima ◽  
Tomer Itkin ◽  
Alexander Kalinkovich ◽  
...  

Abstract Heparanase is involved in tumor growth and metastasis. Because of its unique cleavage of heparan sulfate, which binds cytokines, chemokines and proteases, we hypothesized that heparanase is also involved in regulation of early stages of hematopoiesis. We report reduced numbers of maturing leukocytes but elevated levels of undifferentiated Sca-1+/c-Kit+/Lin− cells in the bone marrow (BM) of mice overexpressing heparanase (hpa-Tg). This resulted from increased proliferation and retention of the primitive cells in the BM microenvironment, manifested in increased SDF-1 turnover. Furthermore, heparanase overexpression in mice was accompanied by reduced protease activity of MMP-9, elastase, and cathepsin K, which regulate stem and progenitor cell mobilization. Moreover, increased retention of the progenitor cells also resulted from up-regulated levels of stem cell factor (SCF) in the BM, in particular in the stem cell–rich endosteum and endothelial regions. Increased SCF-induced adhesion of primitive Sca-1+/c-Kit+/Lin− cells to osteoblasts was also the result of elevation of the receptor c-Kit. Regulation of these phenomena is mediated by hyperphosphorylation of c-Myc in hematopoietic progenitors of hpa-Tg mice or after exogenous heparanase addition to wildtype BM cells in vitro. Altogether, our data suggest that heparanase modification of the BM microenvironment regulates the retention and proliferation of hematopoietic progenitor cells.


1998 ◽  
Vol 21 (6_suppl) ◽  
pp. 1-10
Author(s):  
C. Carlo-Stella ◽  
V. Rizzoli

Mobilized peripheral blood progenitor cells (PBPC) are increasingly used to reconstitute hematopoiesis in patients undergoing high-dose chemoradiotherapy. PBPC collections comprise a heterogeneous population containing both committed progenitors and pluripotent stem cells and can be harvested (i) in steady state, (ii) after chemotherapeutic conditioning, (iii) growth factor priming, or (iv) both. The use of PBPC has opened new therapeutic perspectives mainly related to the availability of large amounts of mobilized hematopoietic stem and progenitor cells. Extensive manipulation of the grafts, including the possibility of exploiting these cells as vehicles for gene therapy strategies, are now possible and will be reviewed.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5002-5002
Author(s):  
Eva M. Villaron ◽  
Julia Almeida ◽  
Natalia Lopez-Holgado ◽  
Fermin M. Sanchez-Guijo ◽  
Mercedes Alberca ◽  
...  

Abstract INTRODUCTION: Peripheral blood stem cell (PBSC) mobilization is impaired in patients receiving chemotherapy but, as far as we know there is no data about the impact of chemotherapy on different PB progenitor cell subpopulations. AIM: to ascertain whether or not immature or committed progenitor cell are affected by chemotherapy prior PBSC mobilization in NHL patients. MATERIAL AND METHODS: a total of 27 PB samples from NHL patients and 36 PB samples from healthy donors were studied. Immunophenotypic analysis of CD34+ cell subpopulations was performed using the following four colour combinations of monoclonal antibodies (FITC/PE/PC5/APC): CD90/CD133/CD38/CD34 and CD71/CD13/CD45/CD34. In order to study committed progenitor cells “in vitro”, standard colony-forming assays were used and, in order to investigate the behaviour of the uncommitted progenitors Delta Assays of plastic adherent progenitor cells (PΔ) were performed. RESULTS: The comparison between NHL patients and healthy donors is shown in Table 1. The relationship between data obtained by flow cytometry and cultures was statistically significant (p<0.05, r>0.568) for all the progenitors analysed. Table 1: Results of Immunophenotypic and Functional Assays LNH patients Healthy donors p Data expressed as median (range). 1. Percentage among CD34+ cells. 2. Number of CFU/10 5 planted cells. 3. Number of CFU/10 6 planted cells % CD34 0.16(0.04–3.65) 0.57(0.11–1.81) 0.013 Immunophenotypic Data Erithroid 1 0.05(0.01–0.60) 0.14(0.02–0.42) 0.098 Myelo–monocytic 1 0.11(0.02–2.41) 0.37(0.07–1.18) 0.014 Immature 1 0.01(0.00–0.63) 0.05(0.01–0.19) 0.014 CFU-GM 2 70(4–440) 90(0–904) 0.327 Clonogenic and Delta Assays data BFU-E 2 62(6–172) 85(0–240) 0.046 CFU-Mix 2 18(0–124) 42(0–140) 0.018 CFU Δ3 356(0–3509) 953(90–8320) 0.033 CONCLUSIONS: We can conclude that in NHL, mobilized committed and above all immature progenitors are impaired when compared with healthy subjects, both analysed by immunological and functional assays. Only granulomonocytic progenitors analysed by a functional approach seemed to be preserved.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4237-4237
Author(s):  
Toni Peled ◽  
Noga R. Goudsmid ◽  
Frida Grynspan ◽  
Sophie Adi ◽  
Efrat Landau ◽  
...  

Abstract In vitro cell expansion is constrained by default pathways of commitment and differentiation resulting in limited expansion of hematopoietic stem-progenitor cells (HSPCs). Still, several ex vivo manipulations have been reported to achieve expansion of HSPCs by altering cell cycle kinetics and enhancing progression through the G1-S barrier. We have previously shown that addition of tetraethylenepentamine (TEPA), a polyamine copper chelator, to cytokine-supplemented CD34+ cell cultures modulates cytokine-driven hematopoietic cell fate in vitro, resulting in remarkable expansion of a cell population that displays phenotypic and functional characteristics of HSPCs (Exp Hematol.2004;32 (6):547–55). The objective of the present study was to evaluate the mechanism leading to expansion of early progenitor cells following short-term exposure to TEPA. To this end, cell cycle profile, tracking of proliferation history, as well as determination of actual numbers of progenitor subsets were studied. In order to follow the extent of proliferation by tracking the number of cellular divisions, freshly isolated CD34+ cells were labeled with PKH2, a membrane dye that is sequentially diluted during every cell division. Fluorescence intensities of CD34+ and that of a more immature CD34+CD38− cell subset were determined immediately after staining. The cells were then cultured in serum-containing medium and a cocktail of cytokines (SCF, TPO, IL-6, Flt3-ligand, at 50 ng/ml each and IL-3 at 20 ng/ml), with and without TEPA. Total nucleated cells (TNC), purified CD34+ cells and CD34+CD38− cells were analyzed for PKH2 fluorescence intensity during the first two weeks of culture. Cell cycle profile was detected with the DNA intercalating agent propidium iodide, which determines cellular DNA content. FACS analysis of the cultured cells as well as progenitor cell quantification by immuno-affinity purification revealed comparable expansion levels of TNC and CD34+ cells in both TEPA-treated and control cultures during the first two weeks, as previously published. Although similar CD34+ cell numbers were observed, the mean frequency of CD34+CD38− and CD34+CD38-Lin- cells within the CD34+ cell population was significantly higher in TEPA-treated cultures over the control (0.2 vs. 0.04 and 0.07 vs. 0.01, respectively; n=6, p&lt;0.05). Median PKH2 fluorescence intensity of CD34+CD38− subset was two fold higher in TEPA than in control cultures, demonstrating that early progenitor cells derived from TEPA-treated cultures consistently accomplished less proliferation cycles as compared to early progenitor cells derived from control cultures. This effect was not mirrored by a significant alteration of the cell cycle profile (Control (%): G1=26±14, S=2.6±0.1, G2=0.7±0.4; TEPA(%): G1=29±12, S=1.7±0.9, G2=0.4±0.2). Taken together, the data suggest that during cycling, the CD34+CD38− phenotype is preserved more successfully in TEPA-treated than in control cultures, suggesting retention of self-renewing potential of early progenitor cells under these culture conditions. This mechanism also supports a role for TEPA in inhibition of early progenitor cell differentiation. Ongoing work is aimed at further defining whether phenotype reversion or self-renewal (or both) lie at the foundation of TEPA-mediated progenitor cell expansion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


2009 ◽  
Vol 117 (10) ◽  
pp. 355-364 ◽  
Author(s):  
Gian Paolo Fadini ◽  
Mattia Albiero ◽  
Andrea Cignarella ◽  
Chiara Bolego ◽  
Christian Pinna ◽  
...  

The beneficial or detrimental effects of androgens on the cardiovascular system are debated. Endothelial progenitor cells are bone-marrow-derived cells involved in endothelial healing and angiogenesis, which promote cardiovascular health. Oestrogens are potent stimulators of endothelial progenitor cells, and previous findings have indicated that androgens may improve the biology of these cells as well. In the present study, we show that testosterone and its active metabolite dihydrotestosterone exert no effects on the expansion and function of late endothelial progenitors isolated from the peripheral blood of healthy human adult males, whereas they positively modulate early ‘monocytic’ endothelial progenitor cells. In parallel, we show that castration in rats is followed by a decrease in circulating endothelial progenitor cells, but that testosterone and dihydrotestosterone replacement fails to restore endothelial progenitor cells towards normal levels. This is associated with persistently low oestrogen levels after androgen replacement in castrated rats. In a sample of 62 healthy middle-aged men, we show that circulating endothelial progenitor cell levels are more directly associated with oestradiol, rather than with testosterone, concentrations. In conclusion, our results collectively demonstrate that androgens exert no direct effects on endothelial progenitor cell biology in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document