High Strength and High Thermal Conductivity Carbon Foam Reinforced with Graphite Nanoparticles

2007 ◽  
Vol 26 (5) ◽  
pp. 305-312 ◽  
Author(s):  
Yong Wang ◽  
Zhi Xu ◽  
Qingqing An ◽  
Yimin Wang

A novel carbon foam with high strength and high thermal conductivity was prepared through the incorporation of graphite nanoparticles into coal tar based mesophase pitch precursor. Carbon foam was obtained after carbonization and graphitication of pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite nanoparticles in a high pressure and temperature chamber. The foam had possessed high strength and exceptional high thermal conductivity. SEM observation showed that less micro cracking appeared on the cell wall of foam by the addition of graphite nanoparticles. The test of thermal conductivity and mechanical properties shows that the thermal conductivity of modified carbon foam could reach 195 W/m.K. The mechanical properties were improved markedly, and compressive strength was increased from 2 MPa to 18.8 MPa when the additive amount of graphite nanoparticles was 8%.

2008 ◽  
Vol 47-50 ◽  
pp. 566-569
Author(s):  
Yong Wang ◽  
Ling Ling Cao ◽  
Yi Min Wang

A carbon foam with high strength and high thermal conductivity was prepared through the incorporation of nano-titanium particle into mesophase pitch precursor. Results show that titanium act as catalysts to accelerate the graphitization of carbon, promote more perfect and larger crystallites and enhance the conductive and mechanical properties. Test results reveal that titanium doped carbon foam (TDCF) has excellent compressive strength and high thermal conductivity, with highest values reaching 29.6 MPa and 117.8 Wm-1 K-1 for a titanium concentration of 12 wt% in the precursor materials. More compact struts and cell walls stacked by more uniform were observed by scanning electron microscope in carbon foam. Correlation between the content of dopant and the properties and microstructure of TDCF was discussed.


Author(s):  
Zetan Liu ◽  
Shiqiang Zhao ◽  
Tian Yang ◽  
Ji Zhou

AbstractIt is possible to improve the machinability of aluminum nitride-hexagonal boron nitride (AlN-h-BN) ceramics while maintaining high strength and high thermal conductivity. The composite ceramics with 0–30 wt% BN as secondary phase were prepared by hot pressed sintering, using yttrium oxide (Y2O3) as sintering aid. The phase composition, density, microstructure, mechanical properties, thermal conductivity, and dielectric properties were investigated. The sintering additives were favorable to purify the grain boundaries and improve densification, reacting with oxide impurities on the surface of raw material powder particles. The optimum BN content improved the flexural strength and fracture toughness of composite ceramics with 475 MPa and 4.86 MPa·m1/2, respectively. With increasing the amount of BN, the thermal conductivity and hardness of composites gradually decreased, but the minimum value of thermal conductivity was still 85.6 W·m−1·K−1. The relative dielectric constant and dielectric loss tangent of the samples ranged from 6.8 to 8.3 and from 2.4 × 10−3 to 6.4 × 10−3, respectively, in 22–26 GHz.


2022 ◽  
Author(s):  
Dong Wang ◽  
Dingyao Liu ◽  
JianHua Xu ◽  
JiaJun Fu ◽  
Kai Wu

It is still a formidable challenge to develop ideal thermal dissipation materials with simultaneous high thermal conductivity, excellent mechanical softness and toughness, and spontaneous self-healing. Herein, we report the introduction...


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Sign in / Sign up

Export Citation Format

Share Document