scholarly journals Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain

2017 ◽  
Vol 38 (7) ◽  
pp. 1243-1252 ◽  
Author(s):  
Louise M Jørgensen ◽  
Pia Weikop ◽  
Claus Svarer ◽  
Ling Feng ◽  
Sune H Keller ◽  
...  

Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively capture temporal and spatial information about acute changes in brain neurotransmitter systems. We here evaluate the 5-HT1B receptor partial agonist PET radioligand, [11C]AZ10419369, for its sensitivity to detect changes in endogenous cerebral serotonin levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain serotonin levels, we compared the [11C]AZ10419369 PET signal in the pig brain to simultaneous measurements of extracellular serotonin levels with microdialysis after various acute interventions (saline, escitalopram, fenfluramine). The interventions increased the cerebral extracellular serotonin levels to two to six times baseline, with fenfluramine being the most potent pharmacological enhancer of serotonin release. The interventions induced a varying degree of decline in [11C]AZ10419369 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular serotonin level in the pig brain and the 5-HT1B receptor occupancy indicates that [11C]AZ10419369 binding is sensitive to changes in endogenous serotonin levels to a degree equivalent to that reported of [11C]raclopride to dopamine, a much used approach to detect in vivo change in cerebral dopamine.

2016 ◽  
Vol 37 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Louise M Jørgensen ◽  
Pia Weikop ◽  
Jonas Villadsen ◽  
Tanel Visnapuu ◽  
Anders Ettrup ◽  
...  

Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [11C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [11C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [11C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2–11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [11C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [11C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Outi Keinänen ◽  
Eric J. Dayts ◽  
Cindy Rodriguez ◽  
Samantha M. Sarrett ◽  
James M. Brennan ◽  
...  

AbstractThe proliferation of plastics in the environment continues at an alarming rate. Plastic particles have been found to be persistent and ubiquitous pollutants in a variety of environments, including sea water, fresh water, soil, and air. In light of this phenomenon, the scientific and medical communities have become increasingly wary of the dangers posed to human health by chronic exposure to microplastics (< 5 mm diameter) and nanoplastics (< 100 nm diameter). A critical component of the study of the health effects of these pollutants is the accurate determination of their pharmacokinetic behavior in vivo. Herein, we report the first use of molecular imaging to track polystyrene (PS) micro- and nanoplastic particles in mammals. To this end, we have modified PS particles of several sizes—diameters of 20 nm, 220 nm, 1 µm, and 6 µm—with the chelator desferrioxamine (DFO) and radiolabeled these DFO-bearing particles with the positron-emitting radiometal zirconium-89 (89Zr; t1/2 ~ 3.3 d). Subsequently, positron emission tomography (PET) was used to visualize the biodistribution of these radioplastics in C57BL/6J mice at 6, 12, 24, and 48 h after ingestion. The imaging data reveal that the majority of the radioplastics remain in the gastrointestinal tract and are eliminated through the feces by 48 h post-ingestion, a result reinforced by acute biodistribution studies. Ultimately, this work suggests that nuclear imaging—and PET in particular—can be a sensitive and effective tool in the urgent and rapidly growing effort to study the in vivo behavior and potential toxicity of micro- and nanoplastics.


2016 ◽  
Vol 37 (3) ◽  
pp. 1095-1107 ◽  
Author(s):  
Jean-Dominique Gallezot ◽  
Beata Planeta ◽  
Nabeel Nabulsi ◽  
Donna Palumbo ◽  
Xiaoxi Li ◽  
...  

Measurements of drug occupancies using positron emission tomography (PET) can be biased if the radioligand concentration exceeds “tracer” levels. Negative bias would also arise in successive PET scans if clearance of the radioligand is slow, resulting in a carryover effect. We developed a method to (1) estimate the in vivo dissociation constant Kd of a radioligand from PET studies displaying a non-tracer carryover (NTCO) effect and (2) correct the NTCO bias in occupancy studies taking into account the plasma concentration of the radioligand and its in vivo Kd. This method was applied in a study of healthy human subjects with the histamine H3 receptor radioligand [11C]GSK189254 to measure the PK-occupancy relationship of the H3 antagonist PF-03654746. From three test/retest studies, [11C]GSK189254 Kd was estimated to be 9.5 ± 5.9 pM. Oral administration of 0.1 to 4 mg of PF-03654746 resulted in occupancy estimates of 71%–97% and 30%–93% at 3 and 24 h post-drug, respectively. NTCO correction adjusted the occupancy estimates by 0%–15%. Analysis of the relationship between corrected occupancies and PF-03654746 plasma levels indicated that PF-03654746 can fully occupy H3 binding sites ( ROmax = 100%), and its IC50 was estimated to be 0.144 ± 0.010 ng/mL. The uncorrected IC50 was 26% higher.


2016 ◽  
Vol 28 (6) ◽  
pp. 327-336 ◽  
Author(s):  
Masayo Ohyama ◽  
Maho Kondo ◽  
Miki Yamauchi ◽  
Taiichiro Imanishi ◽  
Tsukasa Koyama

ObjectiveAsenapine is an atypical antipsychotic that is currently available for the treatment of schizophrenia and bipolar I disorder. Although the atypical antipsychotics clozapine and olanzapine are effective for depression and anxiety in schizophrenia, as demonstrated by animal model studies, this has not been clarified for asenapine. Therefore, we compared the effects of asenapine in the conditioned fear stress model with those of clozapine and olanzapine.MethodRats were individually fear conditioned using electrical foot shock in a Skinner box. Approximately 24 h later, individual animals were returned to the same Skinner box (without electrical shock) and their freezing behaviour was observed for 5 min. Animals were treated with asenapine, clozapine, olanzapine, the 5-HT1A receptor partial agonist buspirone, or the 5-HT2C receptor antagonist SB242084 at 30 min before freezing behaviour assessment. The 5-HT1A receptor antagonist WAY100635 or the 5-HT2C receptor agonist Ro60-0175 was also used concomitantly with asenapine. The effects of asenapine, clozapine, and olanzapine on serotonin release in the rat hippocampus were also measured using in vivo microdialysis.ResultsAsenapine reduced freezing behaviour, while neither clozapine nor olanzapine reduced freezing behaviour. Buspirone and SB242084 also reduced freezing behaviour. The effect of asenapine in reducing freezing behaviour was not altered by the concomitant administration of WAY100635 or Ro60-0175. Both asenapine and clozapine, but not olanzapine, increased serotonin release in the rat hippocampus.ConclusionAsenapine may have superior therapeutic effect on anxiety symptoms than other agents, although the underlying mechanism of its anxiolytic activity remains unknown.


2008 ◽  
Vol 64 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Koen Van Laere ◽  
Guy Bormans ◽  
Sandra M. Sanabria-Bohórquez ◽  
Tjibbe de Groot ◽  
Patrick Dupont ◽  
...  

2013 ◽  
Vol 33 (5) ◽  
pp. 700-707 ◽  
Author(s):  
Cristian Salinas ◽  
David Weinzimmer ◽  
Graham Searle ◽  
David Labaree ◽  
Jim Ropchan ◽  
...  

In vivo characterization of the brain pharmacokinetics of novel compounds provides important information for drug development decisions involving dose selection and the determination of administration regimes. In this context, the compound-target affinity is the key parameter to be estimated. However, if compounds exhibit a dynamic lag between plasma and target bound concentrations leading to pharmacological hysteresis, care needs to be taken to ensure the appropriate modeling approach is used so that the system is characterized correctly and that the resultant estimates of affinity are correct. This work focuses on characterizing different pharmacokinetic models that relate the plasma concentration to positron emission tomography outcomes measurements (e.g., volume of distribution and target occupancy) and their performance in estimating the true in vivo affinity. Measured (histamine H3 receptor antagonist—GSK189254) and simulated data sets enabled the investigation of different modeling approaches. An indirect pharmacokinetic-receptor occupancy model was identified as a suitable model for the calculation of affinity when a compound exhibits pharmacological hysteresis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Matthieu Colom ◽  
Benjamin Vidal ◽  
Sylvain Fieux ◽  
Jérôme Redoute ◽  
Nicolas Costes ◽  
...  

IntroductionSerotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112).Materials and MethodsFour cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study.ResultsD-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions.ConclusionThe present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rico Grundmann ◽  
Michael Rullmann ◽  
Julia Luthardt ◽  
Franziska Zientek ◽  
Georg-Alexander Becker ◽  
...  

AbstractThe current study aimed to investigate whether the in vivo availability of central serotonin reuptake transporters (5-HTT) is associated with plasma levels of glycosylated hemoglobin (HbA1c) in non-diabetic humans with obesity. 5-HTT availability was measured by using positron emission tomography (PET) imaging with the 5-HTT selective radiotracer [11C]DASB in 23 non-diabetic individuals with obesity and 14 healthy, non-obesity controls. Parametric images of binding potential BPND were generated from the PET data and analyzed together with HbA1c levels by using volume of interest analysis for brain areas relevant to appetite control. Voxel-based morphometry (VBM) of individual magnetic resonance imaging data was further performed to correlate grey matter density (GMD) maps with HbA1c. We found significant negative correlations between HbA1c levels and BPND in right and left hippocampus in obesity (r = − 0.717, p < 0.001, and r = − 0.557, p = 0.006, respectively). VBM analyses revealed that higher HbA1c levels were associated with GMD in the right para-hippocampal area. Our results indicate that chronically high blood glucose levels may evoke changes in hippocampal 5-HTT levels that are in part tied to local microstructure.


2011 ◽  
Vol 32 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Sjoerd J Finnema ◽  
Andrea Varrone ◽  
Tzung-Jeng Hwang ◽  
Christer Halldin ◽  
Lars Farde

Assessment of serotonin release in the living brain with positron emission tomography (PET) may have been hampered by the lack of suitable radioligands. We previously reported that fenfluramine caused a dose-dependent reduction in specific binding in monkeys using a classical displacement paradigm with bolus administration of [11C]AZ10419369. The aim of this study was to confirm our previous findings using an equilibrium approach in monkey. A total of 24 PET measurements were conducted using a bolus infusion protocol of [11C]AZ10419369 in three cynomolgus monkeys. Initial PET measurements were performed to assess suitable Kbol values. The fenfluramine effect on [11C]AZ10419369 binding was evaluated in a displacement and pretreatment paradigm. The effect of fenfluramine on [11C]AZ10419369 binding potential ( BPND) was dose-dependent in the displacement paradigm and confirmed in the pretreatment paradigm. After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BPND of the occipital cortex decreased by 39%, from 1.38 ± 0.04 to 0.84 ± 0.09. This study confirms that the new 5-HT1B receptor radioligand [11C]AZ10419369 is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. The more advanced methodology is suitable for exploring the sensitivity limit to serotonin release as measured using [11C]AZ10419369 and PET.


Sign in / Sign up

Export Citation Format

Share Document