scholarly journals A unified analytical parametric method for kinematic analysis of planar mechanisms

Author(s):  
Kazem Abhary

This paper describes a method for unified parametric kinematic analysis of those planar mechanisms whose geometry can be defined with a set of independent vectorial loops, i.e. solvable independently; this covers a wide range of planar mechanisms. The method is developed by employing the well-known vectorial illustration, and vectorial-loop equations solved with the aid of complex polar algebra leading to a total of only nine unified/generic one-unknown parametric equations consisting of five equations for position analysis and two equations for velocity and acceleration analysis each. Then, the kinematics of joints and mass centers are manifested as resultants of a few known vectors. This method is needless of relative-velocities, relative-accelerations, instantaneous centers of rotation and Kennedy’s Theorem dominantly used in the literature, especially textbooks. The efficiency of the method is demonstrated by its application to a complex mechanism through only eight unified equations, and simultaneously compared to the solution using the textbook common (Raven’s) method which required the derivation of 67 extra equations to get the same results. This reveals the fact that the method is not only a powerful tool for mechanical designers but a most powerful and efficient method for teaching and learning the kinematics of planar mechanisms.

Author(s):  
D J A Simpson ◽  
J E L Simmons ◽  
G Moldovean

This paper describes a new approach to the kinematic analysis of planar mechanisms. The basis of the analytical method is a generic four-bar sub-mechanism which is used as the single building block from which other composite mechanisms may be created. A computer program has been written embodying this method and has been demonstrated to operate successfully providing animated displays of displacement, velocity and acceleration diagrams for a wide range of complex mechanisms.


Author(s):  
Hui-Ping Shen ◽  
Ting-Li Yang

Abstract This work presents a new method for kinematic analysis of planar complex mechanisms, i. e, the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC.) along with the properities of SOC, and the network constraints relationship between SOC. By this method, any planar complex mechanism ran be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route(s) can be automatically selected for kinematic analysis. The kinematic analysis equations with fewest unknown variables can be automatically generated and easily solved. Perhaps, the most attractive features of this method are its high automation and convergence in computer implementations. This work firstly describes the principle of the ordered SOC method and then introduces the computer automatic generation of this method along with the application to two complex linkages. The method developed can be easily extended to the kinemetic analysis of the spatial mechanisms.


2018 ◽  
Vol 17 (3) ◽  
pp. 240-261 ◽  
Author(s):  
Anisah Dickson ◽  
Laura B. Perry ◽  
Susan Ledger

International Baccalaureate (IB) programmes are growing rapidly worldwide, driven in part by their global reputation and concept-driven, inquiry-based approach to teaching and learning. This thematic review of a range of literature sources examines the impact of IB programmes on teaching and learning, highlighting trends, challenges, and benefits. Findings of the review revealed that most of the studies, both qualitative and quantitative, examined stakeholders’ perspectives or self-reported experiences of IB programmes; a very small number used research designs that control for confounding factors or allow causal inferences to be drawn. A wide range of stakeholders report that IB programmes develop research and critical thinking skills, intercultural appreciation and global awareness, as well as cultivate collaborative working cultures and creative pedagogical practices among teachers. Challenges include extra demands on teachers for lesson planning and assessment, additional stress for teachers and students, and competing demands and expectations with national requirements. Recommendations are provided which may guide future research endeavours.


Author(s):  
Iulian Popescu ◽  
Liliana Luca ◽  
Mirela Cherciu ◽  
Dan B. Marghitu

1982 ◽  
Vol 17 (6) ◽  
pp. 405-414 ◽  
Author(s):  
George N Sandor ◽  
E Raghavacharyulu ◽  
Arthur G Erdman

Author(s):  
Jian-Qing Zhang ◽  
Ting-Li Yang

Abstract This work presents a new method for kinetostatic analysis and dynamic analysis of complex planar mechanisms, i.e. the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC,) along with the properties of SOC, and the network constraints relationship between SOC,. By this method, any planar complex mechanism can be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route (s) can be automatically selected for dynamic analysis, the paper present the dynamic equation which can be used to solve both the kinetostatic problem and the general dynamic problem. The main advantage of the proposed approach is the possibility to reduce the number of equations to be solved simultaneously to the minimum, and its high automation as well. The other advantage is the simplification of the determination of the coefficients in the equations, and thus it maybe result in a much less time-consuming algorthem. The proposed approach is illustrated with three examples. The presented method can be easily extended to the dynamic analysis of spatial mechanisms.


Author(s):  
Arunava Biswas ◽  
Gary L. Kinzel

Abstract In this paper an inversion approach is developed for the analysis of planar mechanisms using closed-form equations. The vector loop equation approach is used, and the occurrence matrices of the variables in the position equations are obtained. After the loop equations are formed, dependency checking of the unknowns is performed to determine if it is possible to solve for any two equations in two unknowns. For the cases where the closed-form solutions cannot be implemented directly, possible inversions of the mechanism are studied. If the vector loop equations for an inversion can be solved in closed-form, they are identified and solved, and the solutions are transformed back to the original linkage. The method developed in this paper eliminates the uncertainties involved, and the large number of computations required in solving the equations by iterative methods.


Author(s):  
Kofi Acheaw Owusu ◽  
Lindsey Conner ◽  
Chris Astall

The contextual factors influencing teachers' use of technology as well as teachers' Technological Pedagogical Content Knowledge (TPACK) levels were investigated through multiple embedded case studies of five science teachers who were regular users of technology in their teaching. The case studies reported in this chapter revealed that teachers used technology to support inquiry learning through a wide range of ways in lower levels of high school but mostly to clarify concepts and theories for senior level students. This chapter identified that teachers demonstrated different TPACK levels of expertise and engagement in the use of technology when transferring different types of knowledge from one teaching and learning context to another and for addressing differences amongst learners. The context of assessment driven teaching influences science teachers' TPACK for integrating technology in instruction. The chapter noted that having teachers actively evaluate the effectiveness of the technology on students' learning may help increase teachers' TPACK levels.


2018 ◽  
pp. 448-475
Author(s):  
Kofi Acheaw Owusu ◽  
Lindsey Conner ◽  
Chris Astall

The contextual factors influencing teachers' use of technology as well as teachers' Technological Pedagogical Content Knowledge (TPACK) levels were investigated through multiple embedded case studies of five science teachers who were regular users of technology in their teaching. The case studies reported in this chapter revealed that teachers used technology to support inquiry learning through a wide range of ways in lower levels of high school but mostly to clarify concepts and theories for senior level students. This chapter identified that teachers demonstrated different TPACK levels of expertise and engagement in the use of technology when transferring different types of knowledge from one teaching and learning context to another and for addressing differences amongst learners. The context of assessment driven teaching influences science teachers' TPACK for integrating technology in instruction. The chapter noted that having teachers actively evaluate the effectiveness of the technology on students' learning may help increase teachers' TPACK levels.


Author(s):  
Rebecca Petley ◽  
Jill Attewell ◽  
Carol Savill-Smith

MoLeNET is a unique collaborative initiative, currently in its third year, which encourages and enables the introduction of mobile learning in English post 14 education via supported shared-cost projects. Mobile learning in MoLeNET is defined by MoLeNET as “The exploitation of ubiquitous handheld technologies, together with wireless and mobile phone networks, to facilitate, support, enhance and extend the reach of teaching and learning.” MoLeNET projects use a wide range of handheld devices with their learners including two handheld game platforms: the Sony PSP and Nintendo DS. A small number of projects have also experimented with educational and therapeutic use of the Nintendo Wii game console and experienced considerable success in engaging reluctant learners and supporting learners with difficulties and/or disabilities. This paper explores the impact that mobile game technologies have on teaching and learning for those involved in MoLeNET, including the development of academic and social skills and the improvement of mobility and health related issues.


Sign in / Sign up

Export Citation Format

Share Document