Finite-Time Thermodynamics and Endoreversible Heat Engines

1993 ◽  
Vol 21 (4) ◽  
pp. 337-346 ◽  
Author(s):  
C. Wu ◽  
R. L. Kiang ◽  
V. J. Lopardo ◽  
G. N. Karpouzian

An endoreversible heat engine is an internally reversible and externally irreversible cyclic device which exchanges heat and power with its surroundings. Classical engineering thermodynamics is based on the concept of equilibrium. Time is not considered in the energy interactions between the heat engine and its environment. On the other hand, although rate of energy transfer is taught in heat transfer, the course does not cover heat engines. The finite-time thermodynamics is a newly developing field to fill in the gap between thermodynamics and heat transfer. Two types of engines are modelled in this paper—a reciprocating and a steady flow—with results obtained for maximum power output and efficiency at maximum power. It is shown that the latter is the same for both types of engines but that the maximum value of power production is different.

2009 ◽  
Vol 13 (4) ◽  
pp. 33-40 ◽  
Author(s):  
Lingen Chen ◽  
Jun Li ◽  
Fengrui Sun

A complex system including several heat reservoirs, finite thermal capacity subsystems with different temperatures and a transformer (heat engine or refrigerator) with linear phenomenological heat transfer law [q ? ?(T -1)] is studied by using finite time thermodynamics. The optimal temperatures of the subsystems and the transformer and the maximum power output (or the minimum power needed) of the system are obtained.


2019 ◽  
Vol 44 (2) ◽  
pp. 181-191 ◽  
Author(s):  
M. A. Zaeva ◽  
A. M. Tsirlin ◽  
O. V. Didina

Abstract From the point of view of finite time thermodynamics, the performance boundaries of thermal machines are considered, taking into account the irreversibility of the heat exchange processes of the working fluid with hot and cold sources. It is shown how the kinetics of heat exchange affects the shape of the optimal cycle of a heat engine and its performance, with a focus on the energy conversion efficiency in the maximum power mode. This energy conversion efficiency can depend only on the ratio of the heat transfer coefficients to the sources or not depend on them at all. A class of kinetic functions corresponding to “natural” requirements is introduced and it is shown that for any kinetics from this class the optimal cycle consists of two isotherms and two adiabats, not only for the maximum power problem, but also for the problem of maximum energy conversion efficiency at a given power. Examples are given for calculating the parameters of the optimal cycle for the case when the heat transfer coefficient to the cold source is arbitrarily large and for kinetics in the form of a Fourier law.


2018 ◽  
Vol 43 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Ricardo T. Paéz-Hernández ◽  
Juan Carlos Chimal-Eguía ◽  
Norma Sánchez-Salas ◽  
Delfino Ladino-Luna

AbstractThis paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon–Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon–Ahlborn engine, European Journal of Physics30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics69 (1991), 7465–7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs’ temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong–Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.


Author(s):  
Houcheng Zhang ◽  
Lanmei Wu ◽  
Guoxing Lin

A class of solar-driven heat engines is modeled as a combined system consisting of a solar collector and a unified heat engine, in which muti-irreversibilities including not only the finite rate heat transfer and the internal irreversibility, but also radiation-convection heat loss from the solar collector to the ambience are taken into account. The maximum overall efficiency of the system, the optimal operating temperature of the solar collector, the optimal temperatures of the working fluid and the optimal ratio of heat transfer areas are calculated by using numerical calculation method. The influences of radiation-convection heat loss of the collector and internal irreversibility on the cyclic performances of the solar-driven heat engine system are revealed. The results obtained in the present paper are more general than those in literature and the performance characteristics of several solar-driven heat engines such as Carnot, Brayton, Braysson and so on can be directly derived from them.


Author(s):  
Christopher B. Churchill ◽  
John Shaw

Two thirds of the energy generated in the United States is currently lost as waste heat, representing a potentially vast source of green energy. Low Carnot efficiency is an inherent limitation of extracting energy from low-grade thermal sources (temperature gradients near or below 100C), and SMA heat engines could be useful for those applications where low weight and packaging are overriding considerations. Although many shape memory alloy (SMA) heat engines have been proposed to harvest this energy, and a few have been built and demonstrated in past decades, they have not been commercially successful. Some of the barriers to commercialization include their perceived low thermodynamic efficiency, high material cost, low material durability, complexities when using fluid baths, and the lack of robust constitutive models and design tools. Recent advances, however, in SMA longevity, reductions in materials costs (as production volumes have increased), and a better understanding of SMA behavior have stimulated new research on SMA heat engines. The Lightweight Thermal Energy Recovery System (LighTERS) is an ongoing ARPA-E funded collaboration between General Motors, HRL Laboratories, Dynalloy, Inc., and the University of Michigan. In the LighTERS engine (a refinement of the Dr. Johnson engine), a closed loop SMA spring element generates mechanical power by pulling itself between alternating hot and cold air regions. The first known thermo-mechanical model for this type of heat engine was developed in three stages. First, the constitutive and heat transfer relationships of an SMA spring form were characterized experimentally. Second, those relationships were used as inputs in a steady-state model of the heat engine, including both convective heat transfer and large-deformation mechanics. Finally, the model was validated successfully against measurements of a experimental heat engine built at HRL Labs.


2012 ◽  
Vol 271-272 ◽  
pp. 1062-1066
Author(s):  
Zhi Guo Wei ◽  
Hai Kun Tao ◽  
Yong Li

A basic model with both property of thermodynamic and heat transfer is obtained by simplifying the prime process of ship Steam Power System (SPS), which is converted into endoreversible Carnot Cycle by the introduction of mean temperature in the cycle process. The design parameters is analyzed and optimized in the view point of finite time thermodynamics (FTT) and entropy generation minimization. Results show that, the temperature ratio (α) and the heat transfer parameter ratio (β) of heat source and heat sink are two important influence factors of cycle system performance, and the increase of α and decrease of β will redound to the reduction of irreversible loss and enhancement of power output.


Author(s):  
Mohsen Saadat ◽  
Mehdi Mirzakhanloo ◽  
Pieter Gagnon ◽  
Mohammad-Reza Alam

Conventional closed cycle heat engines — such as Stirling engines — have many advantages, such as high theoretical efficiency and the ability to produce useful work out of any heat source. However, they suffer from low power density due to poor heat transfer capability between the working gas and its surrounding walls. In this work, we proposed a new architecture where the solid displacer of a Stirling engine is replaced with a ferrofluid liquid displacer. In this approach, the relative displacer location with respects to the engine chamber is controlled (and stabilized) through a strong magnetic field generated by a permanent magnet. The liquid nature of the displacer allows the hot and cold chambers of the engine to be filled with porous material, improving the heat transfer by an order of magnitude. Additionally, this engine architecture mitigates sealing issues, can operate at higher pressures, and has naturally lubricating surfaces. A relatively simple configuration of this idea is modeled in this work. Exploratory dynamic simulations of this unoptimized architecture show a thermal efficiency of 21% and a power density of approximately 700W/lit.


2011 ◽  
Vol 250-253 ◽  
pp. 2979-2983 ◽  
Author(s):  
Wei Li Gu ◽  
Yuan Quan Liu

Analyses the flow process of hot oil in the organic heat transfer material heater based on finite time thermodynamics for the first time, obtains the entropy production rate which includes entropy production rate of dissipation effect and entropy production rate of potential difference, analyses the influence of flow pattern, physical parameters, structure and operation of the organic heat transfer material heater on the entropy production rate of dissipation effect, illustrates the influence of related parameters including Renold number, velocity, viscosity and pipe diameter on the entropy production rate of dissipation effect, and points out the type of hot oil must be considered to decrease the entropy production rate of dissipation effect and the velocity must be control under the premise of avoiding overheat.


Sign in / Sign up

Export Citation Format

Share Document