Three-dimensional printing in prosthetics: Method for managing rapid limb volume change

2020 ◽  
Vol 44 (5) ◽  
pp. 355-358 ◽  
Author(s):  
Eric Nickel ◽  
Kyle Barrons ◽  
Barry Hand ◽  
Alana Cataldo ◽  
Andrew Hansen

Background and Aim: During post-amputation recovery or rapid body mass change, residual limb volume can change quickly, requiring frequent adjustments or replacement of the socket to maintain fit. The aim of this pilot test was to evaluate the feasibility of using a three-dimensional-printed insert to extend the service life of a prosthetic socket after substantial residual limb volume loss. Technique: One research subject with a well-fitting transtibial prosthetic socket had an oversized socket fabricated to simulate substantial limb volume loss. The digital shapes of the oversized and well-fitting sockets were used to create a three-dimensional-printed insert to restore fit. Discussion: Two-minute walk test distance decreased when using the oversized socket without the insert, but not when using the socket with the insert. Socket comfort score was 8+ under all conditions. These results suggest that three-dimensional-printed inserts may be an effective method of extending the service life of prosthetic sockets when rapid limb volume loss occurs. Clinical relevance Three-dimensional (3D) printing gives prosthetists a new tool to manage large volume changes without refabricating entire sockets. Sockets can be fabricated in anticipation of volume gain/loss, using replaceable 3D-printed inserts to maintain fit and comfort.

2016 ◽  
Vol 41 (5) ◽  
pp. 527-531 ◽  
Author(s):  
Kay Mitton ◽  
Jai Kulkarni ◽  
Kenneth William Dunn ◽  
Anthony Hoang Ung

Background: This novel case report describes the problems of prescribing a prosthetic socket in a left transfemoral amputee secondary to chronic patellofemoral instability compounded by complex regional pain syndrome. Case Description and Methods: Following the amputation, complex regional pain syndrome symptoms recurred in the residual limb, presenting mainly with oedema. Due to extreme daily volume fluctuations of the residual limb, a conventional, laminated thermoplastic socket fitting was not feasible. Findings and Outcomes: An adjustable, modular socket design was trialled. The residual limb volume fluctuations were accommodated within the socket. Amputee rehabilitation could be continued, and the rehabilitation goals were achieved. The patient was able to wear the prosthesis for 8 h daily and to walk unaided indoors and outdoors. Conclusion: An adjustable, modular socket design accommodated the daily residual limb volume fluctuations and provided a successful outcome in this case. It demonstrates the complexities of socket fitting and design with volume fluctuations. Clinical relevance Ongoing complex regional pain syndrome symptoms within the residual limb can lead to fitting difficulties in a conventional, laminated thermoplastic socket due to volume fluctuations. An adjustable, modular socket design can accommodate this and provide a successful outcome.


2013 ◽  
Vol 38 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Krittika D’Silva ◽  
Brian J Hafner ◽  
Katheryn J Allyn ◽  
Joan E Sanders

Background: Daily changes in the shape and size of the residual limb affect prosthetic socket fit. Prosthetic socks are often added or removed to manage changes in limb volume. Little has been published about how persons with transtibial amputations use socks to manage diurnal changes in volume and comfort. Objectives: To investigate prosthetic sock use with a customized, self-report questionnaire. Study design: Cross-sectional survey. Methods: Persons with transtibial amputation reported number, thickness, and timing of socks used over a 14-day period. Results: Data from 23 subjects (16 males and 7 females) were included. On average, socks were changed less than once per day (0.6/day) and ply increased over the day (4.8–5.5 ply). Subjects wore prostheses significantly longer (15.0–14.1 h, p = 0.02) and changed socks significantly more often (0.6/day–0.4/day, p = 0.03) on weekdays compared to weekends. Participants were also divided into two subgroups: those who used socks to manage limb volume and those who used socks for socket comfort. Sock use did not differ (p > 0.05) between subgroups. Conclusions: Sock changes are infrequent among persons with lower limb loss. Initial, verbal reports of sock use were often inconsistent with data measured by logs. Tools (e.g. sock logs or objective instruments) to better understand sock-use habits among persons with limb loss are needed. Clinical relevance Knowledge of prosthetic patients’ sock use may help practitioners enhance volume management strategies or troubleshoot fitting issues. Results showed that subjects generally added socks to account for volume loss, and end-of-day sock thickness frequently exceeded 5 ply. Use of sock logs in clinical practice may facilitate improved residual limb health.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Montgomery ◽  
M. Vaughan ◽  
R. Crawford

Studies have shown residual limb volume can vary −11% to 7% in a single day due to changing activity level or weight. However, volume changes of only 3% to 5% can cause users to have difficulty putting on their prosthetic socket. Many existing volume compensation methods are cumbersome, rely on the amputee to maintain the appropriate pressure level, or allow only for a decrease in limb volume. Automatic compensation for volume gain and loss is therefore needed; however, the complexity of designing such sockets renders a traditional fabrication methods cost prohibitive or technically infeasible. Selective Laser Sintering (SLS), a rapid manufacturing (RM) technology, addresses both of these concerns. SLS is a layer-based RM technology that relies on a high power laser to fuse powder particles into a solid object. Minute detail, directly from a 3D CAD model, is possible and a technique has been established for manufacturing prosthetic sockets with passive compliant regions using SLS. Based on this SLS RM technique, steps toward developing a transtibial Nylon prosthetic socket that automatically adapts to volumetric changes in a residual limb will be described. A design methodology was developed to use RM including concept generation, refinement, and final verification. In concept generation, analogies, such as “Chinese Fingertraps” and balloons, were coupled with a review of socket designs in literature and industry and interviews with prosthetists. Inflation of a bladder integrated into the wall of a SLS socket is one of the promising design concepts generated, but the concept needs further refinement. In order to confidently design an inflatable SLS prosthetic, it is critical to understand the relationship between applied pressure and deflection. A testing specimen—5.08 cm diameter thinwalled membrane—was designed to simulate a bladder integrated into the wall of a SLS socket. Several thicknesses were also used to investigate the effects of this parameter on inflation. Preliminary tests were conducted using compressed air for quantifying pressure vs. displacement. During the tests, leakage through open porosity (due to low density) was detected. Density is strongly related to energy transmitted to the part during sintering. The energy concentration is quantified as the Andrew's Number (AN), the inverse relationship of laser power (LP) to laser scanning speed (SSP) and scan spacing (SS). Therefore, to determine the optimal AN—and therefore increase density—an experiment varying LP and SS (SSP is a manufacturer setting) to determine their effects on apparent density and tensile strength was completed. The optimal AN, 1.63 J/cm2 for Nylon 12 powder, was based on highest apparent density and tensile strength. Using this AN, additional deflection samples were tested. Initial results showed a maximum deflection of 2.1 mm at .145 MPa for a 1.3 mm thick membrane. In comparison, changing the volume of a 3D scan of a patient's residual limb by 6% in a 10.9 cm diameter region on the posterior distal tibia socket end, as recommended by a prosthetist, requires a 5.8 mm displacement. Therefore, early results suggest that a single bladder will not meet deflection requirements, influencing the design of multiple larger regions and use of a more flexible material. Results from these experiments will help eliminate concepts which cannot deflect the necessary amount for the volume change, further refining the concepts towards a solution.


Author(s):  
Jason T. Maikos ◽  
John M. Chomack ◽  
J. Peter Loan ◽  
Kathryn M. Bradley ◽  
Susan E. D’Andrea

Individuals with transfemoral amputation experience relative motion between their residual limb and prosthetic socket, which can cause inefficient dynamic load transmission and secondary comorbidities that limit mobility. Accurately measuring the relative position and orientation of the residual limb relative to the prosthetic socket during dynamic activities can provide great insight into the complex mechanics of the socket/limb interface. Five participants with transfemoral amputation were recruited for this study. All participants had a well-fitting, ischial containment socket and were also fit with a compression/release stabilization socket. Participants underwent an 8-wk, randomized crossover trial to compare differences between socket types. Dynamic stereo x-ray was used to quantify three-dimensional residual bone kinematics relative to the prosthetic socket during treadmill walking at self-selected speed. Comfort, satisfaction, and utility were also assessed. There were no significant differences in relative femur kinematics between socket types in the three rotational degrees of freedom, as well as anterior-posterior and medial-lateral translation (p > 0.05). The ischial containment socket demonstrated significantly less proximal-distal translation (pistoning) of the femur compared to the compression/release stabilization socket during the gait cycle (p < 0.05), suggesting that the compression/release stabilization socket provided less control of the residual femur during distal translation. No significant differences in comfort and utility were found between socket types (p > 0.05). The quantitative, dynamic analytical tools used in the study were sensitive to distinguish differences in three-dimensional residual femur motion between two socket types, which can serve as a platform for future comparative effectiveness studies of socket technology.


2020 ◽  
Vol 10 (19) ◽  
pp. 6841
Author(s):  
Chakaveh Ahmadizadeh ◽  
Brittany Pousett ◽  
Carlo Menon

(1) Motivation: Variations in the volume of the residual limb negatively impact various aspects of prosthesis use including the prosthetic socket fit. Although volume adjustment systems mitigate corresponding fit problems to some extent, some users still find the management of these systems challenging. With the ultimate goal of creating a feedback system that assists users with the management of their volume adjustment systems, this study demonstrates the feasibility of detecting variations in the volume of the residual limb. (2) Methods: Measurements of the interface force at the bottom of the prosthetic socket were used as indicators of variations in the volume of the residual limb. Force sensitive resistors (FSRs) were placed at the bottom of participants’ prosthetic sockets to monitor the interface limb–socket force as participants walked on a flat surface. Two phases of experiments were carried out: The first phase considered variations simulated by three prosthetic sock plies, established the feasibility of detecting variations in the volume of the limb based on the interface force, and further determined the locations at which the interface force could be used to detect variations in the limb’s volume. Having validated the effectiveness of the proposed method in the first phase, the second phase was carried out to determine the smallest detectable variation of the limb’s volume using the proposed method. In this phase, variations simulated by one and two prosthetic sock plies were considered. Four and three volunteers with transtibial amputations participated in the first and the second phases, respectively. (3) Results: Results of the first phase showed that an increase in the volume of the limb resulted in a decrease in the force measured at the distal location of the prosthetic sockets of all participants; however, the smallest detected variation could not be statistically confirmed.


2015 ◽  
Vol 27 (05) ◽  
pp. 1550044 ◽  
Author(s):  
Ming-Ji Tzeng ◽  
Lai-Hsing Hsu ◽  
Shih-Hsin Chang

This paper describes a multidisciplinary project that applied the concept of reverse engineering using computer-aided design (CAD) tools to develop a three-dimensional printing (3DP)-based prosthetic socket for transtibial amputees by combining the concepts of patellar tendon-bearing (PTB) socket design principle and total surface-bearing (TSB) socket casting method. Using contemporary tools such as a handheld 3D scanner and an entry-level 3DP machine, together with an in-house prosthetic socket design system and a stump forming device, allowed us to fabricate prosthetic sockets with a consistent quality, and to shorten the learning process time-frame to fabricate them. The results of a case study of two participants demonstrated that the proposed CAD/3DP process of fabrication of transtibial sockets can be easily applied by an unskilled prosthetist to fabricate a socket with the required quality at the first fitting.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


Sign in / Sign up

Export Citation Format

Share Document