scholarly journals The locus of flicker adaptation in the migraine visual system: A dichoptic study

Cephalalgia ◽  
2012 ◽  
Vol 33 (1) ◽  
pp. 5-19 ◽  
Author(s):  
Michel Thabet ◽  
Frances Wilkinson ◽  
Hugh R Wilson ◽  
Olivera Karanovic

Background Flickering light has been shown to sensitize the migraine visual system at high stimulus contrast while elevating thresholds at low contrast. The present study employs a dichoptic psychophysical paradigm to ask whether the abnormal adaptation to flicker in migraine occurs before or after the binocular combination of inputs from the two eyes in the visual cortex. Methods Following adaptation to high contrast flicker presented to one eye only, flicker contrast increment thresholds were measured in each eye separately using dichoptic viewing. Results Modest interocular transfer of adaptation was seen in both migraine and control groups at low contrast. Sensitization at high contrast in migraine relative to control participants was seen in the adapted eye only, and an unanticipated threshold elevation occurred in the non-adapted eye. Migraineurs also showed significantly lower aversion thresholds to full field flicker than control participants, but aversion scores and increment thresholds were not correlated. Conclusions The results are simulated with a three-stage neural model of adaptation that points to strong adaptation at monocular sites prior to binocular combination, and weaker adaptation at the level of cortical binocular neurons. The sensitization at high contrast in migraine is proposed to result from stronger adaptation of inhibitory neurons, which act as a monocular normalization pool.

Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 149-149
Author(s):  
R J Snowden

The duration over which contrast detection improves (Bloch's regime) decreases with increasing light level and is often thought to reflect the temporal characteristics of the visual system. There is also some evidence to suggest that the temporal characteristics of the visual system might also change with increasing contrast level (M A Georgeson, 1987 Vision Research27 765 – 780). Here we compare temporal summation for stimuli presented on a blank field or on a high contrast background. On each trial a test grating was presented for X ms with the use of a spatial-alternate forced-choice procedure. The test grating (2 cycles deg−1) was presented superimposed on a similar pedestal grating which was also present for 500 ms prior to and after the test grating. Pedestal contrasts of 0% and 32% were tested at mean luminance levels of 150 cd m−2 and 1.5 cd m−2. The results show that both increasing light level and increasing contrast level resulted in smaller temporal summation times. In the current conditions both these effects approximately halve the summation time such that for a stimulus of low light level and of low pedestal contrast the summation time was ∼60 ms; low light, high contrast ∼30 ms; high light, low contrast ∼30 ms; and high light, high contrast ∼15 ms. The results imply that the temporal response of the visual system quickens with increasing contrast.


2005 ◽  
Vol 93 (3) ◽  
pp. 1809-1815 ◽  
Author(s):  
Christopher C. Pack ◽  
J. Nicholas Hunter ◽  
Richard T. Born

Visual neurons are often characterized in terms of their tuning for various stimulus properties, such as shape, color, and velocity. Generally, these tuning curves are further modulated by the overall intensity of the stimulus, such that increasing the contrast increases the firing rate, up to some maximum. In this paper, we describe the tuning of neurons in the middle temporal area (MT or V5) of macaque visual cortex for moving stimuli of varying contrast. We find that, for some MT neurons, tuning curves for stimulus direction, speed, and size are shaped in part by suppressive influences that are present at high stimulus contrast but weak or nonexistent at low contrast. For most neurons, the suppression is direction-specific and strongest for large, slow-moving stimuli. The surprising consequence of this phenomenon is that some MT neurons actually fire more vigorously to a large low-contrast stimulus than to one of high contrast. These results are consistent with recent perceptual observations, as well as with information-theoretic models, which hypothesize that the visual system seeks to reduce redundancy at high contrast while maintaining sensitivity at low contrast.


Author(s):  
A. Syahputra

Surveillance is very important in managing a steamflood project. On the current surveillance plan, Temperature and steam ID logs are acquired on observation wells at least every year while CO log (oil saturation log or SO log) every 3 years. Based on those surveillance logs, a dynamic full field reservoir model is updated quarterly. Typically, a high depletion rate happens in a new steamflood area as a function of drainage activities and steamflood injection. Due to different acquisition time, there is a possibility of misalignment or information gaps between remaining oil maps (ie: net pay, average oil saturation or hydrocarbon pore thickness map) with steam chest map, for example a case of high remaining oil on high steam saturation interval. The methodology that is used to predict oil saturation log is neural network. In this neural network method, open hole observation wells logs (static reservoir log) such as vshale, porosity, water saturation effective, and pay non pay interval), dynamic reservoir logs as temperature, steam saturation, oil saturation, and acquisition time are used as input. A study case of a new steamflood area with 16 patterns of single reservoir target used 6 active observation wells and 15 complete logs sets (temperature, steam ID, and CO log), 19 incomplete logs sets (only temperature and steam ID) since 2014 to 2019. Those data were divided as follows ~80% of completed log set data for neural network training model and ~20% of completed log set data for testing the model. As the result of neural model testing, R2 is score 0.86 with RMS 5% oil saturation. In this testing step, oil saturation log prediction is compared to actual data. Only minor data that shows different oil saturation value and overall shape of oil saturation logs are match. This neural network model is then used for oil saturation log prediction in 19 incomplete log set. The oil saturation log prediction method can fill the gap of data to better describe the depletion process in a new steamflood area. This method also helps to align steam map and remaining oil to support reservoir management in a steamflood project.


Author(s):  
María Carmen Sánchez-González ◽  
Raquel García-Oliver ◽  
José-María Sánchez-González ◽  
María-José Bautista-Llamas ◽  
José-Jesús Jiménez-Rejano ◽  
...  

In our work, we determined the value of visual acuity (VA) with ETDRS charts (Early Treatment Diabetic Retinopathy Study). The purpose of the study was to determine the measurement reliabilities, calculating the correlation coefficient interclass (ICC), the value of the error associated with the measure (SEM), and the minimal detectable change (MDC). Forty healthy subjects took part. The mean age was 23.5 ± 3.1 (19 to 26) years. Visual acuities were measured with ETDRS charts (96% ETDRS chart nº 2140) and (10% SLOAN Contrast Eye Test chart nº 2153). The measurements were made (at 4 m) under four conditions: Firstly, photopic conditions with high contrast (HC) and low contrast (LC) and after 15 min of visual rest, mesopic conditions with high and low contrast. Under photopic conditions and high contrast, the ICC = 0.866 and decreased to 0.580 when the luminosity and contrast decreased. The % MDC in the four conditions was always less than 10%. It was minor under photopic conditions and HC (5.83) and maximum in mesopic conditions and LC (9.70). Our results conclude a high reliability of the ETDRS test, which is higher in photopic and high contrast conditions and lower when the luminosity and contrast decreases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
You Liu ◽  
Jungan Wang ◽  
Fangfang Wang ◽  
Zhengchun Cheng ◽  
Yinyu Fang ◽  
...  

AbstractWindow glazing plays an essential role to modulate indoor light and heat transmission, which is a prospect to save the energy cost in buildings. The latest photovoltachromic technology has been regarded as one of the most ideal solutions, however, to achieve full-frame size (100% active area) and high-contrast ratio (>30% variable in visible wavelength) for smart window applicability is still a challenge. Here we report a photovoltachromic device combining full-transparent perovskite photovoltaic and ion-gel based electrochromic components in a vertical tandem architecture without any intermediated electrode. Most importantly, by accurately adjusting the halide-exchanging period, this photovoltachromic module can realize a high pristine transmittance up to 76%. Moreover, it possesses excellent colour-rendering index to 96, wide contrast ratio (>30%) on average visible transmittance (400-780 nm), and a self-adaptable transmittance adjustment and control indoor brightness and temperature automatically depending on different solar irradiances.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


2008 ◽  
Vol 20 (7) ◽  
pp. 1847-1872 ◽  
Author(s):  
Mark C. W. van Rossum ◽  
Matthijs A. A. van der Meer ◽  
Dengke Xiao ◽  
Mike W. Oram

Neurons in the visual cortex receive a large amount of input from recurrent connections, yet the functional role of these connections remains unclear. Here we explore networks with strong recurrence in a computational model and show that short-term depression of the synapses in the recurrent loops implements an adaptive filter. This allows the visual system to respond reliably to deteriorated stimuli yet quickly to high-quality stimuli. For low-contrast stimuli, the model predicts long response latencies, whereas latencies are short for high-contrast stimuli. This is consistent with physiological data showing that in higher visual areas, latencies can increase more than 100 ms at low contrast compared to high contrast. Moreover, when presented with briefly flashed stimuli, the model predicts stereotypical responses that outlast the stimulus, again consistent with physiological findings. The adaptive properties of the model suggest that the abundant recurrent connections found in visual cortex serve to adapt the network's time constant in accordance with the stimulus and normalizes neuronal signals such that processing is as fast as possible while maintaining reliability.


2017 ◽  
Vol 44 (9) ◽  
pp. e153-e163 ◽  
Author(s):  
Damien Racine ◽  
Anaïs Viry ◽  
Fabio Becce ◽  
Sabine Schmidt ◽  
Alexandre Ba ◽  
...  

Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 961-976 ◽  
Author(s):  
Richard A Eagle

The aim of the experiments was to discover whether the visual system has independent access to motion information at different spatial scales when presented with a broadband stimulus. Subjects were required to discriminate between a pair of two-frame motion sequences, one containing a coherently displacing pattern and the other containing a pattern with high-frequency noise. The stimuli were either narrowband (1 octave) or broadband (6 octaves spanning 0.23–15.0 cycles deg−1) and their power spectra were either flat or followed a 1 /f2 function. For the broadband stimuli, noise was introduced cumulatively into increasingly lower frequencies. For the narrowband stimuli, noise was introduced into the same frequency band as the signal. All stimuli could be defined by the lowest noise frequency ( n1) they contained. For each stimulus, the largest spatial displacement across the two frames at which the task could be performed was measured ( dmax). For the narrowband stimuli, dmax increased as n1 was lowered. This was true over the entire frequency range for the 1 /f2 stimuli, though the task became impossible for the flat-spectrum stimuli at the lowest frequencies. This is attributed to the very low contrast of these latter stimuli. The dmax values for the broadband stimuli tended to shadow those of the narrowband stimuli with the equivalent values of n1 being around 25% lower. The data were modelled by spatiotemporally filtering the stimuli and considering the amount of directional power in the signal and noise sequences. The results suggest that there must be multiple spatial-frequency channels in operation, and that for broadband patterns the visual system has perceptual access to these individual channel outputs, utilising different filters depending on the task requirements.


Sign in / Sign up

Export Citation Format

Share Document