Adaptive Cruise Control Operation for Improved Motorway Traffic Flow

Author(s):  
Anastasia Spiliopoulou ◽  
Diamantis Manolis ◽  
Foteini Vandorou ◽  
Markos Papageorgiou

This study presents an ACC (adaptive cruise control)–based traffic control strategy which aims to adapt in real time the driving behavior of ACC-equipped vehicles to the prevailing traffic conditions so that motorway traffic flow efficiency is improved. The potential benefits obtained by applying the proposed control concept are demonstrated for different ACC penetration rates by use of validated microscopic simulation applied to a real motorway stretch where recurrent traffic congestion is created under the current manual driving conditions because of an on-ramp bottleneck. The simulation results demonstrate that, even for low penetration rates of ACC vehicles, the proposed control concept improves the average vehicle delay and fuel consumption by reducing the space-time extent of congestion compared with the case of only manually driven or regular ACC vehicles.

Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Author(s):  
Silvia F. Varotto ◽  
Haneen Farah ◽  
Tomer Toledo ◽  
Bart van Arem ◽  
Serge P. Hoogendoorn

Automated vehicles and driving assistance systems such as adaptive cruise control (ACC) are expected to reduce traffic congestion, accidents, and levels of emissions. Field operational tests have found that drivers may prefer to deactivate ACC in dense traffic flow conditions and before changing lanes. Despite the potential effects of these control transitions on traffic flow efficiency and safety, most mathematical models evaluating the impact of ACC do not adequately represent that process. This research aimed to identify the main factors influencing drivers’ choice to resume manual control. A mixed logit model that predicted the choice to deactivate the system or overrule it by pressing the gas pedal was estimated. The data set was collected in an on-road experiment in which 23 participants drove a research vehicle equipped with full-range ACC on a 35.5-km freeway in Munich, Germany, during peak hours. The results reveal that drivers were more likely to deactivate the ACC and resume manual control when approaching a slower leader, when expecting vehicles cutting in, when driving above the ACC target speed, and before exiting the freeway. Drivers were more likely to overrule the ACC system by pressing the gas pedal a few seconds after the system had been activated and when the vehicle decelerated. Everything else being equal, some drivers had higher probabilities to resume manual control. This study concludes that a novel conceptual framework linking ACC system settings, driver behavior characteristics, driver characteristics, and environmental factors is needed to model driver behavior in control transitions between ACC and manual driving.


Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


Author(s):  
Isaac Oyeyemi Olayode ◽  
Alessandro Severino ◽  
Tiziana Campisi ◽  
Lagouge Kwanda Tartibu

In the last decades, the Italian road transport system has been characterized by severe and consistent traffic congestion and in particular Rome is one of the Italian cities most affected by this problem. In this study, a LevenbergMarquardt (LM) artificial neural network heuristic model was used to predict the traffic flow of non-autonomous vehicles. Traffic datasets were collected using both inductive loop detectors and video cameras as acquisition systems and selecting some parameters including vehicle speed, time of day, traffic volume and number of vehicles. The model showed a training, test and regression value (R2) of 0.99892, 0.99615 and 0.99714 respectively. The results of this research add to the growing body of literature on traffic flow modelling and help urban planners and traffic managers in terms of the traffic control and the provision of convenient travel routes for pedestrians and motorists.


2020 ◽  
Vol 12 (15) ◽  
pp. 5923 ◽  
Author(s):  
Xu Sun ◽  
Kun Lin ◽  
Pengpeng Jiao ◽  
Huapu Lu

The paper focuses on the problem of traffic congestion at intersection based on the mechanism of risk identification. The main goal of this study is to explore a new methodology for identifying and predicting the intersection congestion. Considering all the factors influencing the traffic status of intersection congestion, an integrated evaluation index system is constructed. Then, a detailed dynamic decision model is proposed for identifying the risk degree of the traffic congestion and predicting its influence on future traffic flow, which combines the traffic flow intrinsic properties with the basic model of the Risking Dynamic Multi-Attribute Decision-Making theory. A case study based on a real-world road network in Baoji, China, is implemented to test the efficiency and applicability of the proposed modeling. The evaluation result is in accord with the actual condition and shows that the approach proposed can determine the likelihood and risk degree of the traffic congestion occurring in the intersection, which can be used as a tool to help transport managers make some traffic control measures in advance.


2016 ◽  
Vol 49 (11) ◽  
pp. 196-201 ◽  
Author(s):  
Roman Schmied ◽  
Harald Waschl ◽  
Luigi del Re

Sign in / Sign up

Export Citation Format

Share Document