Minimizing Total Logistics Cost for Long-Haul Multi-Stop Truck Transportation

Author(s):  
Michael G. Kay ◽  
Kenan Karagul ◽  
Yusuf Şahin ◽  
Gurhan Gunduz

Whenever there is sufficient demand, companies generally prefer the full truckload (TL) option for long-distance transport, resulting in large and less frequent shipment operations that can be costly if inventory carrying costs are high. Less than truckload (LTL) is another option for transport when carrying costs are high and/or there is insufficient demand. Shipment consolidation provides another option that combines many of the benefits of both TL and LTL. Shipment consolidation is a cost-effective transport solution that combines different size shipments into a single truckload. Combining many loads as a single load brings together economies of scale and potential savings. Traditional routing techniques that minimize distance are not suitable for shipments that have different origins and destinations because it can be beneficial to travel further to minimize overall transport and inventory cost, or what is termed total logistics cost (TLC). Effective consolidation of multi-stop routes to minimize TLC requires routing procedures that are more computationally intensive to find beneficial combinations of loads into consolidated shipments. In this study, we have developed a saving-based procedure to determine consolidated route sequences that minimize the TLC of shipments. Twenty-one data sets were produced using real city coordinates and population densities in North Carolina to demonstrate the effectiveness of the procedure. The solutions of the proposed method are compared with the solutions of the traditional Clarke and Wright (C-W) algorithm. Although the traditional C-W algorithm provides very fast solution times, the proposed method has produced much better solution values.

2005 ◽  
Vol 85 (2) ◽  
pp. 291-294 ◽  
Author(s):  
E. Steinnes and A. J. Friedland

In the past two decades, investigators have documented a decrease in total lead concentration and amount in upper soil horizons of forest soils following a reduction in the use of gasoline lead additives. In this study, we compare three data sets of lead isotopic ratios in forest soils from Sweden, Norway and the United States of America in order to formulate hypotheses relating to the factors that dictate lead distribution among horizons in Podzolic soils. A larger fraction of anthropogenic lead is seen at greater depths in the Swedish sites and in the southern sites from Norway then in the USA site. At present, only the time of onset of lead pollution appears to be related to the observed pattern. These observations could not have been made within any individual study but became clear when the three independent studies were examined together. Key words: Lead, soils, long distance transport, migration rates


2021 ◽  
Author(s):  
Nirmol Kumar Halder ◽  
David Fuentes ◽  
Malcolm Possell ◽  
Ben Bradshaw ◽  
Lachlan Ingram ◽  
...  

Abstract Improving the efficiency of fertilizer application is paramount to both the sustainability and profitability of forest plantations. Therefore, developing reliable, cost-effective tools to assess tree nutritional status is of great interest. This investigation sought to assess the use of phloem sap derived metabolites as an indicator of nutritional status on a background of seasonal water availability of E. globulus trees grown under field conditions. Phloem is a central conduit for long distance transport and signaling in plants and offers great promise in reflecting plant scale resource limitations. Changes in the abundance of solutes and isotopes in phloem sap are sensitive to environmental cues. With a focus on both water and nutrient availability, we characterize patterns in phloem sugars, amino acids and the abundance of carbon isotopes in phloem sap obtained from E. globulus among different seasons and fertilizer treatments. Phloem derived total amino acid concentration was found to increase with increasing nitrogen (N) supply, however, this response was lost with the concurrent addition of phosphorus (P) and at the highest level of N supply. Significant seasonal variation in all measured parameters was also detected highlighting the need for caution in making quantitative relationships with growth. Broader implications of the interactive effects of both water supply and multi-nutrient additions, and relationships with growth are discussed.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


Author(s):  
Anita Roth-Nebelsick ◽  
Tatiana Miranda ◽  
Martin Ebner ◽  
Wilfried Konrad ◽  
Christopher Traiser

AbstractTrees are the fundamental element of forest ecosystems, made possible by their mechanical qualities and their highly sophisticated conductive tissues. The evolution of trees, and thereby the evolution of forests, were ecologically transformative and affected climate and biogeochemical cycles fundamentally. Trees also offer a substantial amount of ecological niches for other organisms, such as epiphytes, creating a vast amount of habitats. During land plant evolution, a variety of different tree constructions evolved and their constructional principles are a subject of ongoing research. Understanding the “natural construction” of trees benefits strongly from methods and approaches from physics and engineering. Plant water transport is a good example for the ongoing demand for interdisciplinary efforts to unravel form-function relationships on vastly differing scales. Identification of the unique mechanism of water long-distance transport requires a solid basis of interfacial physics and thermodynamics. Studying tree functions by using theoretical approaches is, however, not a one-sided affair: The complex interrelationships between traits, functionality, trade-offs and phylogeny inspire engineers, physicists and architects until today.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc8873
Author(s):  
Peng Qin ◽  
Guohua Zhang ◽  
Binhua Hu ◽  
Jie Wu ◽  
Weilan Chen ◽  
...  

Long-distance transport of the phytohormone abscisic acid (ABA) has been studied for ~50 years, yet its mechanistic basis and biological significance remain very poorly understood. Here, we show that leaf-derived ABA controls rice seed development in a temperature-dependent manner and is regulated by defective grain-filling 1 (DG1), a multidrug and toxic compound extrusion transporter that effluxes ABA at nodes and rachilla. Specifically, ABA is biosynthesized in both WT and dg1 leaves, but only WT caryopses accumulate leaf-derived ABA. Our demonstration that leaf-derived ABA activates starch synthesis genes explains the incompletely filled and floury seed phenotypes in dg1. Both the DG1-mediated long-distance ABA transport efficiency and grain-filling phenotypes are temperature sensitive. Moreover, we extended these mechanistic insights to other cereals by observing similar grain-filling defects in a maize DG1 ortholog mutant. Our study demonstrates that rice uses a leaf-to-caryopsis ABA transport–based mechanism to ensure normal seed development in response to variable temperatures.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 296-297
Author(s):  
Daniela M Meléndez ◽  
Sonia Marti ◽  
Luigi Faucitano ◽  
Derek B Haley ◽  
Timothy D Schwinghamer ◽  
...  

Abstract Blood metabolites are used to assess a variety of animal conditions for veterinary diagnosis and research. Concentration of metabolites in blood can be measured using a commercially-available lab-based assay or in real-time using a handheld device developed to be more time- and cost-effective than the lab-based method. Lactate is a product of anaerobic glycolysis, used in animal research as an indicator of muscle fatigue. Therefore, it has been used as an indicator of cattle response to long distance transportation. The aim of this study was to assess the relationship of L-lactate concentrations measured using a Lactate Scout+ analyzer (Lactate Scout, EFK Diagnostics, Barleben, Germany) and a lactate assay colorimetric kit (Lactate Assay Kit, Cell Biolabs Inc., San Diego, CA). Blood samples were collected by venipuncture from 96 steers (245 ± 35.7 kg BW) prior to (L1) and after 36 h, and prior to and after an additional 4 h of road transportation, and on d 1, 2, 3, 5, 14, and 28 after transport. The Lactate Scout+ analyzer strip was dipped in blood at the time of sampling, while blood samples were collected into sodium fluoride tubes for use in colorimetric analysis. Pearson correlations were calculated to determine the relationship between the experimental methods for the quantification of L-lactate concentrations. The strengths and levels of statistical significance of the correlation varied over the observed time points, r = -0.03, P = 0.75 (L1) to r = 0.75, P = < 0.0001 (d 3). The correlation for the pooled data was weak but statistically significant (r = 0.33, P < 0.001). Based on the experimental results, the Lactate Scout+ analyzer is not a suitable alternative to a lab-based assay for measuring L-lactate in transported cattle, due to variability across sampling time points and weak correlation with the traditional enzymatic method.


Sign in / Sign up

Export Citation Format

Share Document