scholarly journals Lateral Meniscal Graft Transplantation: Effect of Fixation Method on Joint Contact Mechanics During Simulated Gait

2019 ◽  
Vol 47 (10) ◽  
pp. 2437-2443 ◽  
Author(s):  
Caroline Brial ◽  
Moira McCarthy ◽  
Olufunmilayo Adebayo ◽  
Hongsheng Wang ◽  
Tony Chen ◽  
...  

Background: Controversy exists regarding the optimal bony fixation technique for lateral meniscal allografts. Purpose/Hypothesis: The objective was to quantify knee joint contact mechanics across the lateral plateau for keyhole and bone plug meniscal allograft transplant fixation techniques throughout simulated gait. It was hypothesized that both methods of fixation would improve contact mechanics relative to the meniscectomized condition, while keyhole fixation would restore the distribution of contact stress closer to that of the intact knee. Study Design: Controlled laboratory study. Methods: Six human cadaveric knees were mounted on a multidirectional dynamic simulator and subjected to the following conditions: (1) native intact meniscus, (2) keyhole fixation of the native meniscus, (3) bone plug fixation of the native meniscus, and (4) meniscectomy. Contact area, peak contact stress, and the distribution of stress across the tibial plateau were computed at 14% and 45% of the gait cycle, at which axial forces are at their highest. Translation of the weighted center of contact stress throughout simulated gait was computed. Results: Both bony fixation techniques improved contact mechanics relative to the meniscectomized condition. The keyhole technique was not significantly different from the intact condition for the following metrics: contact area, peak contact stress, distribution of force between the meniscal footprint and cartilage-to-cartilage contact, and the position of the weighted center of contact. In contrast, bone plug fixation resulted in a significant decrease of 21% to 28% in contact area at 14% and 45% of the simulated gait cycle, a significant increase in peak contact stresses of 34% at 45% of the gait cycle, and a shift in the weighted center of contact, which increased forces in the cartilage-to-cartilage contact area at 45% of the gait cycle. Conclusion: While both keyhole and bone plug fixation methods improved lateral compartment contact mechanics relative to the meniscectomized knee, keyhole fixation restored contact mechanics closer to that of the intact knee. Clinical Relevance: Method of meniscal fixation is under the direct control of the surgeon. From a biomechanics perspective, keyhole fixation is advocated for its ability to mimic intact knee joint contact mechanics.

2021 ◽  
pp. 036354652110285
Author(s):  
Tony Chen ◽  
Caroline Brial ◽  
Moira McCarthy ◽  
Russell F. Warren ◽  
Suzanne A. Maher

Background: Although polyvinyl alcohol (PVA) implants have been developed and used for the treatment of femoral osteochondral defects, their effect on joint contact mechanics during gait has not been assessed. Purpose/Hypothesis: The purpose was to quantify the contact mechanics during simulated gait of focal osteochondral femoral defects and synthetic PVA implants (10% and 20% by volume of PVA), with and without porous titanium (pTi) bases. It was hypothesized that PVA implants with a higher polymer content (and thus a higher modulus) combined with a pTi base would significantly improve defect-related knee joint contact mechanics. Study Design: Controlled laboratory study. Methods: Four cylindrical implants were manufactured: 10% PVA, 20% PVA, and 10% and 20% PVA disks mounted on a pTi base. Devices were implanted into 8 mm–diameter osteochondral defects created on the medial femoral condyles of 7 human cadaveric knees. Knees underwent simulated gait and contact stresses across the tibial plateau were recorded. Contact area, peak contact stress, the sum of stress in 3 regions of interest across the tibial plateau, and the distribution of stresses, as quantified by tracking the weighted center of contact stress throughout gait, were computed for all conditions. Results: An osteochondral defect caused a redistribution of contact stress across the plateau during simulated gait. Solid PVA implants did not improve contact mechanics, while the addition of a porous metal base led to significantly improved joint contact mechanics. Implants consisting of a 20% PVA disk mounted on a pTi base significantly improved the majority of contact mechanics parameters relative to the empty defect condition. Conclusion: The information obtained using our cadaveric test system demonstrated the mechanical consequences of femoral focal osteochondral defects and provides biomechanical support to further pursue the efficacy of high-polymer-content PVA disks attached to a pTi base to improve contact mechanics. Clinical Relevance: As a range of solutions are explored for the treatment of osteochondral defects, our preclinical cadaveric testing model provides unique biomechanical evidence for the continued investigation of novel solutions for osteochondral defects.


2021 ◽  
pp. 036354652110282
Author(s):  
Niv Marom ◽  
Hamidreza Jahandar ◽  
Thomas J. Fraychineaud ◽  
Zaid A. Zayyad ◽  
Hervé Ouanezar ◽  
...  

Background: There is concern that utilization of lateral extra-articular tenodesis (LET) in conjunction with anterior cruciate ligament (ACL) reconstruction (ACLR) may disturb lateral compartment contact mechanics and contribute to joint degeneration. Hypothesis: ACLR augmented with LET will alter lateral compartment contact mechanics in response to simulated pivoting maneuvers. Study Design: Controlled laboratory study. Methods: Loads simulating a pivot shift were applied to 7 cadaveric knees (4 male; mean age, 39 ± 12 years; range, 28-54 years) using a robotic manipulator. Each knee was tested with the ACL intact, sectioned, reconstructed (via patellar tendon autograft), and, finally, after augmenting ACLR with LET (using a modified Lemaire technique) in the presence of a sectioned anterolateral ligament and Kaplan fibers. Lateral compartment contact mechanics were measured using a contact stress transducer. Outcome measures were anteroposterior location of the center of contact stress (CCS), contact force from anterior to posterior, and peak and mean contact stress. Results: On average, augmenting ACLR with LET shifted the lateral compartment CCS anteriorly compared with the intact knee and compared with ACLR in isolation by a maximum of 5.4 ± 2.3 mm ( P < .001) and 6.0 ± 2.6 mm ( P < .001), respectively. ACLR augmented with LET also increased contact force anteriorly on the lateral tibial plateau compared with the intact knee and compared with isolated ACLR by a maximum of 12 ± 6 N ( P = .001) and 17 ± 10 N ( P = .002), respectively. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress by 0.7 ± 0.5 MPa ( P = .005) and by 0.17 ± 0.12 ( P = .006), respectively, at 15° of flexion. Conclusion: Under simulated pivoting loads, adding LET to ACLR anteriorized the CCS on the lateral tibial plateau, thereby increasing contact force anteriorly. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress at 15° of flexion. Clinical Relevance: The clinical and biological effect of increased anterior loading of the lateral compartment after LET merits further investigation. The ability of LET to anteriorize contact stress on the lateral compartment may be useful in knees with passive anterior subluxation of the lateral tibia.


Author(s):  
T Stewart ◽  
Z M Jin ◽  
D Shaw ◽  
D D Auger ◽  
M Stone ◽  
...  

The tibio-femoral contact area in five current popular total knee joint replacements has been measured using pressure-sensitive film under a normal load of 2.5 kN and at several angles of flexion The corresponding maximum contact pressure has been estimated from the measured contact areas and found to exceed the point at which plastic deformation is expected in the ultra-high molecular weight polyethylene (UHMWPE) component particularly at flexion angles near 90°. The measured contact area and the estimated maximum contact stress have been found to be similar in magnitude for all of the five knee joint replacements tested. A significant difference, however, has been found in maximum contact pressure predicted from linear elasticity analysis for the different knee joints. This indicates that varying amounts of plastic deformation occurred in the polyethylene component in the different knee designs. It is important to know the extent of damage as knees with large amounts of plastic deformation are more likely to suffer low cycle fatigue failure. It is therefore concluded that the measurement of contact areas alone can be misleading in the design of and deformation in total knee joint replacements. It is important to modify geometries to reduce the maximum contact stress as predicted from the linear elasticity analysis, to below the linear elastic limit of the plastic component.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xingxing Fang ◽  
Dahan Li ◽  
Yucheng Xin ◽  
Songquan Wang ◽  
Yongbo Guo ◽  
...  

Purpose The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle. Design/methodology/approach In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface. Findings The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup. Originality/value Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.


The Knee ◽  
2016 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Shawn Farrokhi ◽  
Carrie A. Voycheck ◽  
Jonathan A. Gustafson ◽  
G. Kelley Fitzgerald ◽  
Scott Tashman

2021 ◽  
pp. 112070002110364
Author(s):  
Jessica E Goetz ◽  
Holly D Thomas-Aitken ◽  
Sean E Sitton ◽  
Robert W Westermann ◽  
Michael C Willey

Aim: The purpose of this study was to use computational modeling to determine if surgical correction of hip dysplasia restores hip contact mechanics to those of asymptomatic, radiographically normal hips. Methods: Discrete element analysis (DEA) was used to compute joint contact stresses during the stance phase of normal walking gait for 10 individuals with radiographically normal, asymptomatic hips and 10 age- and weight-matched patients with acetabular dysplasia who underwent periacetabular osteotomy (PAO). Results: Mean and peak contact stresses were higher ( p < 0.001 and p = 0.036, respectively) in the dysplastic hips than in the matched normal hips. PAO normalised standard radiographic measurements and medialised the location of computed contact stress within the joint. Mean contact stress computed in dysplastic hips throughout the stance phase of gait (median 5.5 MPa, [IQR 3.9–6.1 MPa]) did not significantly decrease after PAO (3.7 MPa, [IQR 3.2–4.8]; p = 0.109) and remained significantly ( p < 0.001) elevated compared to radiographically normal hips (2.4 MPa, [IQR 2.2–2.8 MPa]). Peak contact stress demonstrated a similar trend. Joint contact area during the stance phase of gait in the dysplastic hips increased significantly ( p = 0.036) after PAO from 395 mm2 (IQR 378–496 mm2) to 595 mm2 (IQR 474–660 mm2), but remained significantly smaller ( p = 0.001) than that for radiographically normal hips (median 1120 mm2, IQR 853–1444 mm2). Conclusions: While contact mechanics in dysplastic hips more closely resembled those of normal hips after PAO, the elevated contact stresses and smaller contact areas remaining after PAO indicate ongoing mechanical abnormalities should be expected even after radiographically successful surgical correction.


2017 ◽  
Vol 38 (6) ◽  
pp. 694-700 ◽  
Author(s):  
Jeremy LaMothe ◽  
Josh R. Baxter ◽  
Susannah Gilbert ◽  
Conor I. Murphy ◽  
Sydney C. Karnovsky ◽  
...  

Background: Syndesmotic injuries can be associated with poor patient outcomes and posttraumatic ankle arthritis, particularly in the case of malreduction. However, ankle joint contact mechanics following a syndesmotic injury and reduction remains poorly understood. The purpose of this study was to characterize the effects of a syndesmotic injury and reduction techniques on ankle joint contact mechanics in a biomechanical model. Methods: Ten cadaveric whole lower leg specimens with undisturbed proximal tibiofibular joints were prepared and tested in this study. Contact area, contact force, and peak contact pressure were measured in the ankle joint during simulated standing in the intact, injured, and 3 reduction conditions: screw fixation with a clamp, screw fixation without a clamp (thumb technique), and a suture-button construct. Differences in these ankle contact parameters were detected between conditions using repeated-measures analysis of variance. Results: Syndesmotic disruption decreased tibial plafond contact area and force. Syndesmotic reduction did not restore ankle loading mechanics to values measured in the intact condition. Reduction with the thumb technique was able to restore significantly more joint contact area and force than the reduction clamp or suture-button construct. Conclusion: Syndesmotic disruption decreased joint contact area and force. Although the thumb technique performed significantly better than the reduction clamp and suture-button construct, syndesmotic reduction did not restore contact mechanics to intact levels. Clinical Relevance: Decreased contact area and force with disruption imply that other structures are likely receiving more loads (eg, medial and lateral gutters), which may have clinical implications such as the development of posttraumatic arthritis.


2006 ◽  
Vol 22 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Takeo Nagura ◽  
Hideo Matsumoto ◽  
Yoshimori Kiriyama ◽  
Ajit Chaudhari ◽  
Thomas P. Andriacchi

The aim of the study was to estimate the tibiofemoral joint force in deep flexion to consider how the mechanical load affects the knee. We hypothesize that the joint force should not become sufficiently large to damage the joint under normal contact area, but should become deleterious to the joint under the limited contact area. Sixteen healthy knees were analyzed using a motion capture system, a force plate, a surface electromyography, and a knee model, and then tibiofemoral joint contact forces were calculated. Also, a contact stress simulation using the contact areas from the literature was performed. The peak joint contact forces (M±SD) were 4566 ± 1932 N at 140 degrees in rising from full squat and 4479 ± 1478 N at 90 degrees in rising from kneeling. Under normal contact area, the tibiofemoral contact stresses in deep flexion were less than 5 MPa and did not exceed the stress to damage the cartilage. The contact stress simulation suggests that knee prosthesis having the contact area smaller than 200 mm2may be problematic since the contact stress in deep flexion would become larger than 21 MPa, and it would lead damage or wear of the polyethylene.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
David J. Heckelsmiller ◽  
M. James Rudert ◽  
Thomas E. Baer ◽  
Douglas R. Pedersen ◽  
Douglas C. Fredericks ◽  
...  

Acute mechanical damage and the resulting joint contact abnormalities are central to the initiation and progression of post-traumatic osteoarthritis (PTOA). Study of PTOA is typically performed in vivo with replicate animals using artificially induced injury features. The goal of this work was to measure changes in a joint contact stress in the knee of a large quadruped after creation of a clinically realistic overload injury and a focal cartilage defect. Whole-joint overload was achieved by excising a 5-mm wedge of the anterior medial meniscus. Focal cartilage defects were created using a custom pneumatic impact gun specifically developed and mechanically characterized for this work. To evaluate the effect of these injuries on joint contact mechanics, Tekscan (Tekscan, Inc., South Boston, MA) measurements were obtained pre-operatively, postmeniscectomy, and postimpact (1.2-J) in a nonrandomized group of axially loaded cadaveric sheep knees. Postmeniscectomy, peak contact stress in the medial compartment is increased by 71% (p = 0.03) and contact area is decreased by 35% (p = 0.001); the center of pressure (CoP) shifted toward the cruciate ligaments in both the medial (p = 0.004) and lateral (p = 0.03) compartments. The creation of a cartilage defect did not significantly change any aspect of contact mechanics measured in the meniscectomized knee. This work characterizes the mechanical environment present in a quadrupedal animal knee joint after two methods to reproducibly induce joint injury features that lead to PTOA.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Gu ◽  
Marcus G. Pandy

Abstract The primary aim of this study was to validate predictions of human knee-joint contact mechanics (specifically, contact pressure, contact area, and contact force) derived from finite-element models of the tibiofemoral and patellofemoral joints against corresponding measurements obtained in vitro during simulated weight-bearing activity. A secondary aim was to perform sensitivity analyses of the model calculations to identify those parameters that most significantly affect model predictions of joint contact pressure, area, and force. Joint pressures in the medial and lateral compartments of the tibiofemoral and patellofemoral joints were measured in vitro during two simulated weight-bearing activities: stair descent and squatting. Model-predicted joint contact pressure distribution maps were consistent with those obtained from experiment. Normalized root-mean-square errors between the measured and calculated contact variables were on the order of 15%. Pearson correlations between the time histories of model-predicted and measured contact variables were generally above 0.8. Mean errors in the calculated center-of-pressure locations were 3.1 mm for the tibiofemoral joint and 2.1 mm for the patellofemoral joint. Model predictions of joint contact mechanics were most sensitive to changes in the material properties and geometry of the meniscus and cartilage, particularly estimates of peak contact pressure. The validated finite element modeling framework offers a useful tool for noninvasive determination of knee-joint contact mechanics during dynamic activity under physiological loading conditions.


Sign in / Sign up

Export Citation Format

Share Document