Small Subchondral Drill Holes Improve Marrow Stimulation of Rotator Cuff Repair in a Rabbit Model of Chronic Rotator Cuff Tear

2020 ◽  
Vol 48 (3) ◽  
pp. 706-714 ◽  
Author(s):  
Yucheng Sun ◽  
Jae-Man Kwak ◽  
Erica Kholinne ◽  
Youlang Zhou ◽  
Jun Tan ◽  
...  

Background: Microfracture of the greater tuberosity has been proved effective for enhancing tendon-to-bone healing after rotator cuff repair. However, no standard diameter for the microfracture has been established. Purpose/Hypothesis: This study aimed to assess treatment with large- and small-diameter microfractures to enhance healing during rotator cuff repair surgery in a rabbit model of chronic rotator cuff tear. It was hypothesized that a small-diameter microfracture had advantages in terms of tendon-to-bone integration, bone-tendon interface maturity, microfracture healing, and biomechanical properties compared with a large-diameter microfracture. Study Design: Controlled laboratory study. Methods: Bilateral supraspinatus tenotomy from the greater tuberosity was performed on 21 New Zealand White rabbits. Bilateral supraspinatus repair was performed 6 weeks later. Small-diameter (0.5 mm) microfracture and large-diameter microfracture (1 mm) were performed on the left side and right side, respectively, in 14 rabbits as a study group, and simple repair without microfracture was performed in 7 rabbits as a control group. At 12 weeks later, 7 of 14 rabbits in the study group were sacrificed for micro–computed tomography evaluation and biomechanical testing. Another 6 rabbits were sacrificed for histological evaluation. In the control group, 3 of the 7 rabbits were sacrificed for histological evaluation and the remaining rabbits were sacrificed for biomechanical testing. Results: Significantly better bone-to-tendon integration was observed in the small-diameter microfracture group. Better histological formation and maturity of the bone-tendon interface corresponding to better biomechanical results (maximum load to failure and stiffness) were obtained on the small-diameter microfracture side compared with the large-diameter side and the control group. The large-diameter microfracture showed worse radiographic and histological properties for healing of the microfracture holes on the greater tuberosity. Additionally, the large-diameter microfracture showed inferior biomechanical properties but similar histological results compared with the control group. Conclusion: Small-diameter microfracture showed advantages with enhanced rotator cuff healing for biomechanical, histological, and radiographic outcomes compared with large-diameter microfracture, and large-diameter microfracture may worsen the rotator cuff healing. Clinical Relevance: This animal study suggested that a smaller diameter microfracture may be a better choice to enhance healing in clinical rotator cuff repair surgery in humans.

2018 ◽  
Vol 46 (11) ◽  
pp. 2743-2754 ◽  
Author(s):  
Wei Su ◽  
Wenxiao Qi ◽  
Xiaoxi Li ◽  
Song Zhao ◽  
Jia Jiang ◽  
...  

Background: Various suture materials can be clinically used for rotator cuff repair (RCR). RCR with high-strength nonabsorbable sutures may not be ideal, because it may cause stress shielding, which may hinder enthesis regeneration and maturation in the tendon-bone interface. RCR with strength-decreasing sutures (ie, absorbable sutures) may be a better choice. However, the effects of suture absorbability on enthesis regeneration and maturation have not been investigated. Hypothesis: The use of absorbable sutures in RCR would produce a better tendon-bone connection structure, which provides histological and biomechanical advantages over the use of nonabsorbable sutures. Study Design: Controlled laboratory study. Methods: A supraspinatus tear was created on the right shoulder in 108 of 120 skeletally mature male rabbits. The animals were randomly divided into 3 groups, with 36 rabbits in each group, to undergo RCR individually with total absorbable, partial absorbable, and nonabsorbable sutures (TAS, PAS, and NAS). Twelve animals in each group were sacrificed at 4, 8, and 12 weeks after surgery, with 6 operated shoulders used for histological evaluation to detect enthesis regeneration and maturation and the other 6 for biomechanical testing. The remaining 12 animals without supraspinatus tear were used as control. Results: At 12 weeks, in the tendon-bone interface, enthesis regeneration was detected in the TAS group but not in the NAS group. A mature enthesis appeared in the TAS group but not in the NAS group. In the PAS group, enthesis regeneration was also observed; however, the fibrocartilage was not abundant and the enthesis maturity not good as compared with the TAS group. Biomechanical testing showed that the rotator cuff–greater tuberosity connection structure in the TAS and PAS groups had greater values of ultimate load to failure, stiffness, and stress than the NAS group at all time points. Conclusion: In RCR in an acute rabbit rotator cuff tear model, the use of sutures with absorbability lead to enthesis regeneration, increased maturity of rotator cuff insertion, and enhanced rotator cuff–greater tuberosity connection. Clinical Relevance: Compared with the use of NAS, the use of TAS or PAS might be a better choice for RCR.


2019 ◽  
Vol 8 (5) ◽  
pp. 216-223 ◽  
Author(s):  
C-H. Chiu ◽  
P. Chen ◽  
W-L. Yeh ◽  
A. C-Y. Chen ◽  
Y-S. Chan ◽  
...  

Objectives Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect. Methods Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay. Results The relative quantification (condition/control) of WST-1 assay on day seven revealed a significant decrease in tenocyte proliferation in small-diameter culture wells (96 and 24 wells) due to the gelling effect. PRFM in large-diameter culture wells (12 and six wells) and co-culture systems induced a significant increase in tenocyte proliferation compared with the control group. The gelling effect of PRFM was avoided by the co-culture device. Conclusion When PRFM and tenocytes are cultured in small-diameter culture wells, the gelling effect will occur and make screening of personalized best-fit PRFM difficult. This effect can be avoided with the co-culture device. Cite this article: C-H. Chiu, P. Chen, W-L. Yeh, A. C-Y. Chen, Y-S. Chan, K-Y. Hsu, K-F. Lei. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Joint Res 2019;8:216–223. DOI: 10.1302/2046-3758.85.BJR-2018-0258.R1.


2017 ◽  
Vol 45 (9) ◽  
pp. 2019-2027 ◽  
Author(s):  
Dong-Sam Suh ◽  
Jun-Keun Lee ◽  
Ji-Chul Yoo ◽  
Sang-Hun Woo ◽  
Ga-Ram Kim ◽  
...  

Background: Failure of rotator cuff healing is a common complication despite the rapid development of surgical repair techniques for the torn rotator cuff. Purpose: To verify the effect of atelocollagen on tendon-to-bone healing in the rabbit supraspinatus tendon compared with conventional cuff repair. Study Design: Controlled laboratory study. Methods: A tear of the supraspinatus tendon was created and repaired in 46 New Zealand White rabbits. They were then randomly allocated into 2 groups (23 rabbits per group; 15 for histological and 8 for biomechanical test). In the experimental group, patch-type atelocollagen was implanted between bone and tendon during repair; in the control group, the torn tendon was repaired without atelocollagen. Each opposite shoulder served as a sham (tendon was exposed only). Histological evaluation was performed at 4, 8, and 12 weeks. Biomechanical tensile strength was tested 12 weeks after surgery. Results: Histological evaluation scores of the experimental group (4.0 ± 1.0) were significantly superior to those of the control group (7.7 ± 2.7) at 12 weeks ( P = .005). The load to failure was significantly higher in the experimental group (51.4 ± 3.9 N) than in the control group (36.4 ± 5.9 N) ( P = .001). Conclusion: Histological and biomechanical studies demonstrated better results in the experimental group using atelocollagen in a rabbit model of the supraspinatus tendon tear. Clinical Relevance: Atelocollagen patch could be used in the cuff repair site to enhance healing.


Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 491
Author(s):  
Donghyun Yi ◽  
Hwanyong Lim ◽  
Jongeun Yim

Background and Objectives: The purpose of this study was to investigate the effects of microcurrent stimulation on pain, shoulder function, and grip strength in patients with rotator cuff repair. Materials and Methods: This randomized single-blind controlled trial was conducted on inpatients of the rehabilitation department, and included 28 patients who underwent rotator cuff repair. Participants were randomly assigned to the experimental group (n = 14), treated with microcurrent stimulation, and the control group (n = 14), treated with false microcurrent stimulation. The microcurrent stimulation administered to the experimental group underwent general physical therapy and microcurrent stimulation three times a week for 4 weeks. Results: Changes in pain, range of motion in shoulder, simple shoulder test, and grip strength were assessed before and after the intervention. Both groups showed a significant decrease in pain and shoulder function (t = 27.412, 22.079, 19.079, and 18.561; p < 0.001), and grip strength showed a significant increase (t = −8.251 and −9.946; p < 0.001). The experimental group that underwent microcurrent stimulation exhibited a significant effect on pain, shoulder function, and grip strength compared with the control group that underwent false microcurrent stimulation (t = −2.17, −2.22, and 2.213; p = 0.039, 0.035, and 0.036). Conclusions: This study confirmed that microcurrent stimulation is effective for the treatment of rotator cuff repair patients.


2018 ◽  
Vol 33 (6) ◽  
pp. 792-807 ◽  
Author(s):  
Gabrielle Deprés-Tremblay ◽  
Anik Chevrier ◽  
Martyn Snow ◽  
Scott Rodeo ◽  
Michael D Buschmann

Rotator cuff tears result in shoulder pain, stiffness, weakness and loss of motion. After surgical repair, high failure rates have been reported based on objective imaging and it is recognized that current surgical treatments need improvement. The aim of the study was to assess whether implants composed of freeze-dried chitosan (CS) solubilized in autologous platelet-rich plasma (PRP) can improve rotator cuff repair in a rabbit model. Complete tears were created bilaterally in the supraspinatus tendon of New Zealand White rabbits ( n = 4 in a pilot feasibility study followed by n = 13 in a larger efficacy study), which were repaired using transosseous suturing. On the treated side, CS-PRP implants were injected into the transosseous tunnels and the tendon itself, and healing was assessed histologically at time points ranging from one day to two months post-surgery. CS-PRP implants were resident within transosseous tunnels and adhered to tendon surfaces at one day post-surgery and induced recruitment of polymorphonuclear cells from 1 to 14 days. CS-PRP implants improved attachment of the supraspinatus tendon to the humeral head through increased bone remodelling at the greater tuberosity and also inhibited heterotopic ossification of the supraspinatus tendon at two months. In addition, the implants did not induce any detectable deleterious effects. This preliminary study provides the first evidence that CS-PRP implants could be effective in improving rotator cuff tendon attachment in a small animal model.


2018 ◽  
Vol 34 (10) ◽  
pp. 2777-2781 ◽  
Author(s):  
John A. Ruder ◽  
Ephraim Y. Dickinson ◽  
Richard D. Peindl ◽  
Nahir A. Habet ◽  
James E. Fleischli

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Sang-Uk Lee ◽  
Hyo-Jin Lee ◽  
Yang-Soo Kim

Abstract Background Arthroscopic rotator cuff repair is a painful procedure, and treatment of emetic events associated with drugs used in the current multimodal pain management remains challenging. This study aimed to evaluate the effectiveness of ramosetron or ondansetron to relieve postoperative nausea and vomiting (PONV) and pain after arthroscopic rotator cuff repair. Methods In total, 122 consecutive patients undergoing arthroscopic rotator cuff repair were randomly allocated into three groups: ramosetron group (n = 39), ondansetron group (n = 43), and control group (n = 40). Then, 0.3 mg of ramosetron or 8 mg of ondansetron was administered intravenously at the end of surgery according to group. All patients received general anesthesia and multimodal pain management protocol including preemptive analgesic medication, fentanyl-based intravenous patient-controlled analgesia, and postoperative analgesic medication. Incidence of emetic events, rescue antiemetic requirements (10 mg of metoclopramide, IV), complete response, pain level, and side effects were recorded in three periods: 0–6, 6–24, and 24–48 h postoperatively. The severity of nausea and pain was evaluated using a visual analog scale. Results The ramosetron group tended to have a lower incidence and severity of nausea during the 6- to 24-h postoperative period and fewer rescue antiemetic drug requirements during the 0- to 48-h period than the control group, showing statistical significance. Additionally, the frequency of complete response of the ramosetron and ondansetron groups was significantly higher than that of the control group. No difference was found among the groups in the pain level except during the 0- to 6-h period. The two groups have a higher complete response during the 6- to 24-h period than the control group. Conclusions Ramosetron use led to a lower incidence, mild severity of nausea, and reduced use of rescue antiemetic drug after arthroscopic rotator cuff repair during the 6- to 24-h postoperative period than the control. Level of evidence Level I, randomized controlled trials, treatment study


2020 ◽  
Vol 14 (1) ◽  
pp. 204-208
Author(s):  
Akira Ando ◽  
Kazuaki Suzuki ◽  
Masashi Koide ◽  
Yoshihiro Hagiwara

Background: Greater Tuberosity (GT) malunion can lead to impingement against the acromion, resulting in pain, stiffness, and weakness of the rotator cuff. For patients with lesser degrees of displacement, partial removal of the GT with rotator cuff repair (tuberoplasty) under fluoroscopic guidance is considered. Case report: A sixty-five year old female fell from a standing height and suffered a minimally displaced isolated GT fracture. She was conservatively managed for four months and referred to our institution due to persisting pain and stiffness. The shoulder motion was severely restricted (anterior elevation: 90°, lateral elevation: 45°, external rotation with the arm at side: 25°, hand behind back: 4th lumber vertebrae) and pain aggravated especially when laterally elevated. Plain radiography and computed tomography showed small superiorly malunited GT and magnetic resonance imaging showed no rotator cuff pathology. Ultrasound images showed impingement of the GT against the acromion when laterally elevated. Arthroscopic excision of the malunited GT and rotator cuff repair along with capsular release and acromioplasty was performed under ultrasound guidance. The ultrasound images were simultaneously delineated to the arthroscopic monitor. Dynamic evaluation of the reshaped GT passing under the acromion was possible. Conclusion: Intraoperative use of ultrasound during arthroscopic tuberoplasty offers advantages over fluoroscopic guidance concerning control of the amount of bone resection and dynamic evaluation between the GT and the acromion in addition to the problems of radiation and space-occupying devices.


2020 ◽  
Author(s):  
Jae hee Choi ◽  
Michael Seungcheol Kang ◽  
Myung Jin Shin ◽  
Dong Min Kim ◽  
Yu Na Lee ◽  
...  

Abstract Background Stem cells are an effective method of biologic healing and can be used to enhance the natural enthesis of the tendon-to-bone junction in rotator cuff repair. The purpose of this study was to investigate if the application of engineered stem cell sheets using adipose-derived cells (ADSCs) was effective in regeneration of natural enthesis and if there was a difference in the result of repair depending on the applied location Methods A chronic rotator cuff tear model was induced for 2 weeks, and cell sheets made using ADSCs isolated from rats were transplanted into the tendon-to-bone junction during surgical repair. Depending on the transplant location of the cell sheet, the difference in rotator cuff healing level between the overlaid group and the interposition group was compared to the surgical repair only group. The samples were obtained based on the tendon-to-bone junction and analysis of gross morphology, histology staining, and biomechanical analysis were performed. Results The differentiation potentials of ADSCs as stem cells were confirmed, as was the potential for tenogenic differentiation by growth factors. ADSCs were prepared as a sheet form to maintain the shape at the target site and to be easily attached. GFP-expressing ADSCs were proliferated in vivo and observed at the transplantation site. The overall healing level was better in the cell sheet transplanted group than in the control group that surgical repair only. Additionally, differences in healing level were shown depending on the cell sheet location by morphological, histological, and biomechanical perspectives. Histological results showed that the interposition transplantation group (1.75 ± 0.43, P = 0.004) showed better fibrocartilage formation and collagen orientation at the junction than the overlaid transplantation group (0.86 ± 0.83). Conclusion In the chronic rotator cuff repair model, the engineered stem cell sheets enhanced the regeneration of the tendon-to-bone junction. This regeneration was more effective when the stem cell sheet was interpositioned at the tendon-to-bone interface. Trial registration: Not applicable


Sign in / Sign up

Export Citation Format

Share Document