Flow Analysis for Optimal Configuration of Hemoperfusion Device

1987 ◽  
Vol 10 (2) ◽  
pp. 115-120
Author(s):  
V. Chang ◽  
A. Battistin ◽  
R. Rodrigue ◽  
T.M.S. Chang

The objective of this experiment was to determine the flow characteristics of a hemoperfusion device. The standard device consists of a cylindrical container which is tapered towards the outlet end. Flow enters the column through a small inlet tube into the wide frontal area of the column. Having passed through the column containing collodian coated activated charcoal spheres, it leaves by the tapered outlet. In order to achieve our aim, we designed and built a two-dimensional plexiglass model consisting of a vertical cross section of the actual hemoperfusion device. Glass beads were used to simulate the artifi-cal carbon cells and a colored solution was used to enable us to visualize the flow. In the normal configuration, it was determined that stagnation and channelling were present. The model was then analysed in the inverse configuration. This way, flow inlet is through the tapered end and flow outlet is towards the wider cylindrical end. This inverse flow configuration improved the flow characteristics and eliminated most of the channelling and stagnation.

1975 ◽  
Vol 15 (04) ◽  
pp. 269-276 ◽  
Author(s):  
J.R. Kyte ◽  
D.W. Berry

Abstract This paper presents an improved procedure for calculating dynamic pseudo junctions that may be used in two-dimensional, areal reservoir simulations to approximate three-dimensional reservoir behavior. Comparison of one-dimensional areal and two-dimensional vertical cross-sectional results for two example problems shows that the new pseudos accurately transfer problems shows that the new pseudos accurately transfer the effects of vertical variations in reservoir properties, fluid pressures, and saturations from the properties, fluid pressures, and saturations from the cross-sectional model to the areal model. The procedure for calculating dynamic pseudo-relative permeability accounts for differences in computing block lengths between the areal and cross-sectional models. Dynamic pseudo-capillary pressure transfers the effects of pseudo-capillary pressure transfers the effects of different pressure gradients in different layers of the cross-sectional model to the areal model. Introduction Jacks et al. have published procedures for calculating dynamic pseudo-relative permeabilities fro m vertical cross-section model runs. Their procedures for calculating pseudo functions are procedures for calculating pseudo functions are more widely applicable than other published approaches. They demonstrated that, in some cases, the derived pseudo functions could be used to simulate three-dimensional reservoir behavior using two-dimensional areal simulators. For our purposes, an areal simulator is characterized by purposes, an areal simulator is characterized by having only one computing block in the vertical dimension. The objectives of this paper are to present an improved procedure for calculating dynamic pseudo functions, including a dynamic pseudo-capillary pressure, and to demonstrate that the new procedure pressure, and to demonstrate that the new procedure generally is more applicable than any of the previously published approaches. The new pseudos previously published approaches. The new pseudos are similar to those derived by jacks et al. in that they are calculated from two-dimensional, vertical cross-section runs. They differ because (1) they account for differences in computing block lengths between the cross-sectional and areal models, and (2) they transfer the effects of different flow potentials in different layers of the cross-sectional potentials in different layers of the cross-sectional model to the areal model. Differences between cross-sectional and areal model block lengths are sometimes desirable to reduce data handling and computing costs for two-dimensional, areal model runs. For very large reservoirs, even when vertical calculations are eliminated by using pseudo functions, as many as 50,000 computing blocks might be required in the two-dimensional areal model to minimize important errors caused by numerical dispersion. The new pseudos, of course, cannot control numerical pseudos, of course, cannot control numerical dispersion in the cross-sectional runs. This is done by using a sufficiently large number of computing blocks along die length of the cross-section. The new pseudos then insure that no additional dispersion will occur in the areal model, regardless of the areal computing block lengths. Using this approach, the number of computing blocks in the two-dimensional areal model is reduced by a factor equal to the square of the ratio of the block lengths for the cross-sectional and areal models. The new pseudos do not prevent some loss in areal flow-pattern definition when the number of computing blocks in the two-dimensional areal model is reduced. A study of this problem and associated errors is beyond the scope of this paper. Our experience suggests that, for very large reservoirs with flank water injection, 1,000 or 2,000 blocks provide satisfactory definition. Many more blocks provide satisfactory definition. Many more blocks might be required for large reservoirs with much more intricate areal flow patterns. The next section presents comparative results for cross-sectional and one-dimensional areal models. These results demonstrate the reliability of the new pseudo functions and illustrate their advantages pseudo functions and illustrate their advantages over previously derived pseudos for certain situations. The relationship between two-dimensional, vertical cross-sectional and one-dimensional areal reservoir simulators has been published previously and will not be repeated here in any detail. Ideally, the pseudo functions should reproduce two-dimensional, vertical cross-sectional results when they are used in the corresponding one-dimensional areal model. SPEJ P. 269


1970 ◽  
Vol 10 (04) ◽  
pp. 405-417 ◽  
Author(s):  
N.D. Shutler

Abstract This paper describes a numerical mathematical model that is a significant extension of a previously published one-dimensional model of the steamflood published one-dimensional model of the steamflood process. process. The model describes the simultaneous flow of the three phases - oil, water and gas - in two dimensions. Interphase mass transfer between water and gas phases is allowed, but the oil is assumed nonvolatile and the hydrocarbon gas insoluble in the liquid phases. The model allows two-dimensional heat convection within the reservoir and two-dimensional heat conduction in a vertical cross-section spanning the oil sand and adjacent strata. Example calculations are presented which, on comparison with experimental results, tend to validate the model. Steam overriding due to gravity effects is shown to significantly reduce oil recovery efficiency in a thick system while jailing to do so in a thinner system. A study of the effect of capillary pressure indicates that failure to scale capillary forces in laboratory models of thick sands may lead to optimistic recovery predictions, while properly scaled capillary forces may be sufficiently low as to play no important role in oil recovery. Calculations made with and without vertical permeability show that failure to account for vertical fluid flow can lead to predictions of pessimistic oil recovery efficiency. pessimistic oil recovery efficiency Introduction Mathematical tools of varying complexity have been used in studying the steamflood process. A "simplified" class of mathematical models has served primarily as aids in engineering design. A more comprehensive class of models has improved understanding of the nature of the process. The model described in this report is of the latter class, but it is more comprehensive than any previously published model. published model. All previously available calculations of the steamflood process are confined to one space dimension in their treatments of fluid flow. Thus all previous models necessary ignore all effects of gravity reservoir heterogeneity, and nonuniform initial fluid-phase distributions on fluid flow in a second dimension. This model, an extension of a previously published model accounts for heat and previously published model accounts for heat and fluid transfer in two space dimensions and, hence, can evaluate these effects on simultaneous horizontal and vertical flow. While the model can describe the areal performance of a steamflood (in which case the heat transfer is described in three dimensions), this aspect will not be considered in this paper. Rather, this paper will describe the model in its application to a vertical cross-section through the reservoir and will consider some preliminary investigations to demonstrate the importance of being able to simultaneously account for horizontal and vertical fluid flow. Mathematical details are given in appendices. MATHEMATICAL DESCRIPTION OF STEAMFLOODING Darcy's law provides expressions for the velocities of the three phases (oil, water and gas), which, when combined with oil, water and gas mass balances give the partial differential equations governing Now of the three phases within a reservoir sand: OIL PHASE ..(1) WATER PHASE ..(2) SPEJ P. 405


1963 ◽  
Vol 3 (01) ◽  
pp. 19-27 ◽  
Author(s):  
P.M. Blair ◽  
D.W. Peaceman

Abstract The shape and position of the gas-oil transition zone during downdip displacement of oil by gas has been calculated using flow equations which include the effects of gravity, relative permeability, capillary pressure and compressibility of the fluids. The calculations treat the problem in two space dimensions, and results are compared with data from a laboratory model tilted at 30 degrees and 60 degrees from the horizontal on displacements near and above the maximum rate at which gravity segregation prevents channeling of the gas along the top of the stratum. The good agreement between calculated and experimental results demonstrates the validity of the technique as well as that of the flow equations. Introduction Knowledge of the fluid distribution and movement in and oil reservoirs important in producing operations and estimation of reserves. The history of the oil industry has included steady progress in improving the accuracy of calculations which provide the required knowledge. The earliest method of calculating reservoir performance consisted of material-balance equations based on the assumption that all properties were uniform throughout a reservoir. For many reservoirs such a simple formulation is still the most useful. However, when large pressure and saturation gradients exist in a reservoir, the assumption of uniform values throughout may lead to significant error. To reduce these errors, Buckley and Leverett introduced a displacement equation which considers pressure and saturation gradients. Methods available at that time permitted solutions to the Buckley-Leverett equation in one space dimension; these solutions have been very useful in solving many problems related to the production of oil. However, the one-dimensional methods are not adequate for systems in which saturations vary in directions other than the direction of flow. An example of such a system is the case of gas displacing oil down a dipping stratum in which the gas-oil contact becomes significantly tilted. Of course, the Buckley-Leverett displacement method cannot predict the tilt of the gas-oil contact. Recent improvements of the one-dimensional Buckley-Leverett method achieve some success in predicting the tilt of the gas-oil contact at sufficiently low flow rates. However, at rates high enough that the viscous pressure gradient nearly equals or exceeds the gravity gradient, even these improved one-dimensional methods incorrectly predict the shape and velocity of the contact. Further progress in estimating such fluid movements in a reservoir appears to require consideration of the problem in more than one space dimension. The recent two-dimensional method of Douglas, Peaceman and Rachford appears adaptable to calculate changes with time of the saturation distribution in a vertical cross-section of a reservoir. The movement of saturation contours should represent the moving fluid contacts and include the effects of crossflow due to gravity, as well as variations in the rock and fluid properties. The nonlinear nature of the equations used in the method has prevented proof of the validity of the solutions. Douglas, Peaceman and Rachford made some comparisons with experiment but did not include cases in which gravity was important nor cases involving displacement by the nonwetting phase. Forthesereasons, atestof the two-dimensional method for a case in which these factors are included would be very desirable. The test selected was a comparison of calculated results with those from a carefully controlled laboratory experiment on a model with measured physical properties. The model selected was one in which gas displaced oil down a tilted, rectangular sand pack. The model can be thought of as representing a vertical cross-section taken parallel to the dip of a reservoir. The displacement thus simulates gas displacing oil downdip that might result from gas-cap expansion or gas injection. SPEJ P. 19^


1977 ◽  
Vol 17 (04) ◽  
pp. 251-262 ◽  
Author(s):  
E.G. Woods ◽  
A.K. Khurana

Abstract Three-dimensional numerical models of bottom-water-drive reservoirs show delayed water breakthrough into individual wells when compared with observed well performance and individual-well coning models. This reservoir-model behavior results from masking of the well coning effect by volume-averaging pressure and saturation profiles around a well over a grid block with a large volume. The reservoir-simulator prediction of well performance can be improved by mathematically performance can be improved by mathematically transforming the production performance of a detailed well-coning model into a set of time-independent pseudorelative-permeability and capillary-pressure curves that then can be used in the reservoir model. A procedure for obtaining the required pseudofunctions is described and the results of their application in simple models and in a large reservoir-simulator model are shown. Introduction The prohibitive cost of numerical reservoir simulation with fine-grid definition models of large reservoirs has led to development of techniques whereby vertical saturation distribution and/or localized flow conditions in the vicinity of individual wells can be approximately accounted for in relatively coarse-grid models at an acceptable incremental cost. In particular, vertical cross-section models under capillary and gravity equilibrium have been used to derive pseudorelative permeabilities and capillary pressures for use in two-dimensional, areal models to simulate the average vertical distribution of flow without having to pay the computing price of a full three-dimensional model. Coats et al. described the use of the vertical equilibrium concept for developing pseudorelative-permeability and capillary-pressure pseudorelative-permeability and capillary-pressure functions for simulating the vertical dimension in a two-dimensional, areal simulator model This method assumes gravity-capillary equilibrium in the vertical direction. Also, Coats et al. developed a dimensionless parameter for estimating when these conditions are valid. Martin formed a mathematical basis for pseudofunctions by reducing the equations for pseudofunctions by reducing the equations for three-phase, three-dimensional, compressible flow to two-dimensional relations by partial integration of the equations of flow. Hearn extended the pseudorelative-permeability concept by adapting it pseudorelative-permeability concept by adapting it to stratified reservoirs where viscous rather than gravity and capillary forces dominate the vertical sweep efficiency. Hawthorne studied the effects of capillary pressure on pseudorelative permeability derived from the Hearn stratified model. Jacks et al. further enlarged thepseudorelative-perrneability concept by developing dynamic pseudorelative permeabilities. (Dynamic pseudos, denoting pseudos permeabilities. (Dynamic pseudos, denoting pseudos determined under flowing rather than static conditions, allow one to account for the interaction between viscous and gravity forces resulting from rate variation in the vertical plane.) Kyte and Berry generalized the work of Jacks et al. by introducing the concept of pseudocapillary pressures and improving dynamic pseudofunction calculations to include varying flow potential gradients. Emanual and Cook expanded the concept of vertical cross-section, pseudorelative permeabilities to include the vertical performance of individual wells. Their procedure combines the effect of coning and well pseudorelative permeabilities for use in a two-dimensional, areal model. Chappelear and Hirasaki used a different approach to including of coning effects in a two-dimensional, areal simulator by developing a functional relationship among water cut, average oil-column thickness, and total rate based on an analytical incompressible, steady-state model. The most sophisticated approach to representing well-coning effects in a reservoir simulator has been taken by Mrosovsky and Ridings and Akbar et al. They incorporated detailed numerical well models into the reservoir-model grid. SPEJ P. 251


1988 ◽  
Vol 110 (4) ◽  
pp. 690-694 ◽  
Author(s):  
A. Cadiou

An efficient method for the experimental measurement of the combustion efficiency in a reheat duct has been developed at ONERA. Such a method is useful because numerous reheat tests are necessary to study the effect of geometry and flow characteristics on reheat performances. Static pressure measurements along the duct and gas sampling in its outlet cross section are the basis of this downstream-to-upstream method. Experimental results with a tri-annular V-gutter flame holder are presented. These results are also used for comparison with theoretical two-dimensional calculations applied to reheat ducts that ultimately may reduce the number of experiments necessary for the development of reheat combustion chambers.


2020 ◽  
Vol 57 (7) ◽  
pp. 947-958 ◽  
Author(s):  
Yu Wang ◽  
Yue Hu ◽  
Tengyuan Zhao

A novel method is developed in this study for soil classification and zonation in a two-dimensional (2D) vertical cross section using cone penetration tests (CPTs). A CPT is usually performed vertically and the number of CPT soundings in a site is often limited in geotechnical engineering practice. It is, therefore, difficult to properly interpret CPT results along the horizontal direction or accurately estimate the horizontal correlation length of CPT data. The method proposed in this study bypasses the difficulty in estimating horizontal correlation length and provides proper identification of subsurface soil stratification (i.e., soil layer number is constant along horizontal direction) and zonation (i.e., soil layer number varies along horizontal direction) in a 2D vertical cross section directly from a limited number of CPT soundings. The proposed method consists of three key elements: 2D interpolation of CPT data using 2D Bayesian compressive sampling; determination of soil behavior type (SBT) using a SBT chart at every location in the 2D section, including locations with measurements and unsampled locations; and soil layer or zone delineation using an edge detection method. Both simulated and real data examples are used to illustrate the proposed method. Results show that the method performs well even when only five sets of CPT soundings are available.


Sign in / Sign up

Export Citation Format

Share Document