Assessment of the capabilities of FireFOAM to model large-scale fires in a well-confined and mechanically ventilated multi-compartment structure

2017 ◽  
Vol 36 (1) ◽  
pp. 3-29 ◽  
Author(s):  
Duy Le ◽  
Jeffrey Labahn ◽  
Tarek Beji ◽  
Cecile B Devaud ◽  
Elizabeth J Weckman ◽  
...  

This article presents a large eddy simulation study of a pool fire in a well-confined and mechanically ventilated multi-room configuration. The capabilities of FireFOAM are assessed by comparing the numerical results to a well-documented set of experimental data available from Propagation d’un Incendie pour des Scénarios Multi-locaux Elémentaires. The eddy dissipation concept, finite volume discrete ordinate method, and one k-equation model are used for combustion, thermal radiation, and sub-grid scale closure, respectively. The main boundary conditions are imposed based on the experimental profiles. A detailed comparison is made with available experimental data. Good agreement between the large eddy simulation results and experimental values is achieved for temperatures, velocity, CO2 volume concentrations, and pressures for most compartments. There are some noticeable underpredictions of temperature in the outlet room. Overall, FireFOAM is shown to have good predictive capabilities for the present confined large-scale fire scenario.

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Siniša Krajnović ◽  
Per Ringqvist ◽  
Branislav Basara

The paper presents a partially averaged Navier–Stokes (PANS) simulation of the flow around a cuboid influenced by crosswind. The results of the PANS prediction are validated against experimental data and results of a large-eddy simulation (LES) made using the same numerical conditions as PANS. The PANS shows good agreement with the experimental data. The prediction of PANS was found to be better than that of the LES in flow regions where simulations suffered from poor near-wall resolution.


Author(s):  
Asela Uyanwaththa ◽  
Weeratunge. Malalasekera ◽  
Graham Hargrave ◽  
Mark Dubal

Jet in a cross-flow (JICF) is a flow arrangement found in many engineering applications, especially in gas turbine air–fuel mixing. Understanding of scalar mixing in JICF is important for low NOx burner design and operation, and numerical simulation techniques can be used to understand both spatial and temporal variation of air–fuel mixing quality in such applications. In this paper, mixing of the jet stream with the cross-flow is simulated by approximating the jet flow as a passive scalar and using the large eddy simulation (LES) technique to simulate the turbulent velocity field. A posteriori test is conducted to assess three dynamic subgrid scale models in modeling jet and cross-flow interaction with the boundary layer flow field. Simulated mean and Reynolds stress component values for velocity field and concentration fields are compared against experimental data to assess the capability of the LES technique, which showed good agreement between numerical and experimental results. Similarly, time mean and standard deviation values of passive scalar concentration also showed good agreement with experimental data. In addition, LES results are further used to discuss the scalar mixing field in the downstream mixing region.


Author(s):  
G. Minelli ◽  
S. Krajnović ◽  
B. Basara

Two unsteady numerical techniques, Partially-Averaged Navier Stokes (PANS) and Large Eddy Simulation (LES), are used to predict the flow in a tube bundle. The results were compared with the existing experimental data. Both methods predicted the flow in a relatively good agreement with the experimental data although the PANS simulation used only fifty percent of the computational nodes compared to the LES. The results of the simulations are used to study the unsteadiness in the flow and identify a dominant frequency of the flow.


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


2011 ◽  
Vol 47 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
G. H. Yeoh ◽  
S. C. P. Cheung ◽  
J. Y. Tu ◽  
T. J. Barber

2019 ◽  
Vol 37 (4) ◽  
pp. 4409-4418 ◽  
Author(s):  
Min-min Zhou ◽  
John C. Parra-Álvarez ◽  
Philip J. Smith ◽  
Benjamin J. Isaac ◽  
Jeremy N. Thornock ◽  
...  

Author(s):  
M. Karimi ◽  
M. Paraschivoiu

In recent years there has been a considerable effort toward applying large eddy simulation methods (LES) to real industrial problems. However, there are still several challenges to be addressed to achieve a reliable LES solution, especially in the context of compressible flows. Furthermore, complex geometries require the unstructured meshes which then interdict the use of very high order schemes. Therefore, LES models are mainly derived and tested on classical problem of simple geometry for incompressible flow and based on higher order schemes. Here, the flow over a gas turbine blade at high Reynolds and Mach numbers is investigated using a mixed finite-volume-finite-element method. Implicit LES method (ILES) as well as Smagorinsky and its dynamic version have been studied. Different variations of the Smagorinsky method have been examined too. The interaction of the numerical dissipation of the scheme with LES models has been explored. The results show the capability of the ILES to take into account the effective viscosity of the flow and the negligible difference of the different LES models in this flow condition. Fairly good agreement with experimental data is found which is superior to RANS results. It is found that there are still some challenges in industrial LES applications which have to be addressed to lead to a better agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document