Neuroinflammation in Children With Infantile Spasms: A Prospective Study Before and After Treatment With Acthar Gel (Repository Corticotropin Injection)

2020 ◽  
Vol 35 (12) ◽  
pp. 808-812
Author(s):  
Harry T. Chugani ◽  
Ajay Kumar

The selective effectiveness of adrenocorticotropic hormone (ACTH) in treating infantile spasms suggests an underlying neuroinflammation. Because neuroinflammation is mediated by activated microglia, which express translocator protein (TSPO), we imaged neuroinflammation in children with infantile spasms using positron emission tomography (PET) with 11C-PK11195 (PK), which selectively binds to TSPO. Children were studied prospectively before and following treatment with Acthar Gel (repository corticotropin injection). We hypothesized that PK-PET would show neuroinflammation (increased PET uptake) in cortical and/or subcortical structures before treatment, and that this inflammation will be abolished/reduced following Acthar Gel treatment. Eight children with infantile spasms (5 males; mean age 1.8±1.1, range 0.9-4.1 years) were recruited. After clinical and video electroencephalograph (EEG) evaluation and dynamic PK-PET scan, children underwent treatment with Acthar Gel over 4 weeks, followed by repeat clinical evaluation/video-EEG 2 weeks after initiation of treatment and repeat PK-PET 2 weeks after treatment completion. Visual and quantitative analysis of PK-PET scans were performed. We calculated regional binding potential (measure of receptor-ligand binding) using a reference tissue model. Focal areas of increased PK-binding were found in the pretreatment PK-PET in 5 children. Following treatment, these increases were either reduced or normalized and were associated with cessation (n=4) or significant reduction (n=1) of spasms and complete disappearance of hypsarrhythmia. One child showed increased binding potential in basal ganglia and thalamus, despite normalization of cortical binding potential; however, these increases were likely associated with death-related causes. This study suggests Acthar Gel–responsive neuroinflammatory changes in children with infantile spasms, supporting a potential role of neuroinflammation in the pathogenesis of infantile spasms.

2011 ◽  
Vol 32 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Federico E Turkheimer ◽  
Sudhakar Selvaraj ◽  
Rainer Hinz ◽  
Venkatesha Murthy ◽  
Zubin Bhagwagar ◽  
...  

This paper aims to build novel methodology for the use of a reference region with specific binding for the quantification of brain studies with radioligands and positron emission tomography (PET). In particular: (1) we introduce a definition of binding potential BPD = DVR–1 where DVR is the volume of distribution relative to a reference tissue that contains ligand in specifically bound form, (2) we validate a numerical methodology, rank-shaping regularization of exponential spectral analysis (RS-ESA), for the calculation of BPD that can cope with a reference region with specific bound ligand, (3) we demonstrate the use of RS-ESA for the accurate estimation of drug occupancies with the use of correction factors to account for the specific binding in the reference. [11C]-DASB with cerebellum as a reference was chosen as an example to validate the methodology. Two data sets were used; four normal subjects scanned after infusion of citalopram or placebo and further six test—retest data sets. In the drug occupancy study, the use of RS-ESA with cerebellar input plus corrections produced estimates of occupancy very close the ones obtained with plasma input. Test-retest results demonstrated a tight linear relationship between BPD calculated either with plasma or with a reference input and high reproducibility.


2004 ◽  
Vol 100 (4) ◽  
pp. 606-610 ◽  
Author(s):  
Taro Nimura ◽  
Tadashi Ando ◽  
Keiichiro Yamaguchi ◽  
Takeshi Nakajima ◽  
Reizo Shirane ◽  
...  

Object. Levodopa-induced dyskinesia (LID) in patients with Parkinson disease (PD) mimics acute dystonic reactions induced by antipsychotic agents, possibly mediated by σ-receptors; however, there are few reports in which the relationship between σ-receptors and LID in advanced PD is investigated. The binding potential of cerebellar σ-receptors before and after a pallidal surgery for dyskinesia in patients with advanced PD is assessed. Methods. Six patients with advanced PD (male/female ratio 3:3, age 56.7 ± 9.8 years) underwent stereotactic pallidal surgery (two posteroventral pallidotomy procedures and four deep brain stimulation of the globus pallidus internus, including one bilateral case). Clinical features of patients with PD were assessed using Hoehn and Yahr (H & Y) stages, the Unified Parkinson's Disease Rating Scale (UPDRS), and the Schwab and England Activities of Daily Life Scale (S & E). The LID was evaluated by LID severity score. The binding potential of cerebellar σ-receptors was determined before and after the surgery by 11C-nemonapride positron emission tomoraphy, a specific radioligand for σ-receptors in the cerebellum. All clinical scores, especially the LID severity score, were dramatically improved after the surgery (p < 0.05). Preoperatively, contralateral cerebellar binding potential was significantly elevated (p < 0.01), and it was reduced after the surgery, but it was still higher than that of healthy volunteers (p < 0.05). The ipsilateral cerebellar binding potential remained unchanged after the surgery. The level of binding potential did not correlate with H & Y stage, UPDRS, or S & E score, but a strong positive correlation was seen between the binding potential and the preoperative LID severity score when the patients were receiving medication (r = 0.893, p < 0.05). Conclusions. Cerebellar σ-receptors may potentially involve the genesis of LID in advanced PD.


2015 ◽  
Vol 35 (7) ◽  
pp. 1199-1205 ◽  
Author(s):  
Kati Alakurtti ◽  
Jarkko J Johansson ◽  
Juho Joutsa ◽  
Matti Laine ◽  
Lars Bäckman ◽  
...  

We measured the long-term test–retest reliability of [11C]raclopride binding in striatal subregions, the thalamus and the cortex using the bolus-plus-infusion method and a high-resolution positron emission scanner. Seven healthy male volunteers underwent two positron emission tomography (PET) [11C]raclopride assessments, with a 5-week retest interval. D2/3 receptor availability was quantified as binding potential using the simplified reference tissue model. Absolute variability (VAR) and intraclass correlation coefficient (ICC) values indicated very good reproducibility for the striatum and were 4.5%/0.82, 3.9%/0.83, and 3.9%/0.82, for the caudate nucleus, putamen, and ventral striatum, respectively. Thalamic reliability was also very good, with VAR of 3.7% and ICC of 0.92. Test-retest data for cortical areas showed good to moderate reproducibility (6.1% to 13.1%). Our results are in line with previous test–retest studies of [11C]raclopride binding in the striatum. A novel finding is the relatively low variability of [11C]raclopride binding, providing suggestive evidence that extrastriatal D2/3 binding can be studied in vivo with [11C]raclopride PET to be verified in future studies.


1999 ◽  
Vol 19 (7) ◽  
pp. 803-808 ◽  
Author(s):  
Anthony K. P. Jones ◽  
Niel D. Kitchen ◽  
Hiroshi Watabe ◽  
Vincent J. Cunningham ◽  
Terry Jones ◽  
...  

The binding of [11C]diprenorphine to µ, κ, and Δ subsites in cortical and subcortical structures was measured by positron emission tomography in vivo in six patients before and after surgical relief of trigeminal neuralgia pain. The volume of distribution of [11C]diprenorphine binding was significantly increased after thermocoagulation of the relevant trigeminal division in the following areas: prefrontal, insular, perigenual, mid-cingulate and inferior parietal cortices, basal ganglia, and thalamus bilaterally. In addition to the pain relief associated with the surgical procedure, there also was an improvement in anxiety and depression scores. In the context of other studies, these changes in binding most likely resulted from the change in the pain state. The results suggest an increased occupancy by endogenous opioid peptides during trigeminal pain but cannot exclude coexistent down-regulation of binding sites.


2011 ◽  
Vol 31 (8) ◽  
pp. 1807-1816 ◽  
Author(s):  
Pablo M Rusjan ◽  
Alan A Wilson ◽  
Peter M Bloomfield ◽  
Irina Vitcu ◽  
Jeffrey H Meyer ◽  
...  

This article describes the kinetic modeling of [18F]-FEPPA binding to translocator protein 18 kDa in the human brain using high-resolution research tomograph (HRRT) positron emission tomography. Positron emission tomography scans were performed in 12 healthy volunteers for 180 minutes. A two-tissue compartment model (2-CM) provided, with no exception, better fits to the data than a one-tissue model. Estimates of total distribution volume ( VT), specific distribution volume ( VS), and binding potential ( BPND) demonstrated very good identifiability (based on coefficient of variation ( COV)) for all the regions of interest (ROIs) in the gray matter ( COV VT < 7%, COV VS < 8%, COV BPND < 11%). Reduction of the length of the scan to 2 hours is feasible as VS and VT showed only a small bias (6% and 7.5%, respectively). Monte Carlo simulations showed that, even under conditions of a 500% increase in specific binding, the identifiability of VT and VS was still very good with COV<10%, across high-uptake ROIs. The excellent identifiability of VT values obtained from an unconstrained 2-CM with data from a 2-hour scan support the use of VT as an appropriate and feasible outcome measure for [18F]-FEPPA.


2009 ◽  
Vol 30 (1) ◽  
pp. 196-210 ◽  
Author(s):  
Jean-Dominique Gallezot ◽  
Nabeel Nabulsi ◽  
Alexander Neumeister ◽  
Beata Planeta-Wilson ◽  
Wendol A Williams ◽  
...  

[11C]P943 is a new radioligand recently developed to image and quantify serotonin 5-Hydroxytryptamine (5-HT1B) receptors with positron emission tomography (PET). The purpose of this study was to evaluate [11C]P943 for this application in humans, and to determine the most suitable quantification method. Positron emission tomography data and arterial input function measurements were acquired in a cohort of 32 human subjects. Using arterial input functions, compartmental modeling, the Logan graphical analysis, and the multilinear method MA1 were tested. Both the two tissue-compartment model and MA1 provided good fits of the PET data and reliable distribution volume estimates. Using the cerebellum as a reference region, BPND binding potential estimates were computed. [11C]P943 BPND estimates were significantly correlated with in vitro measurements of the density of 5-HT1B receptors, with highest values in the occipital cortex and pallidum. To evaluate noninvasive methods, two- and three-parameter graphical analyses, Simplified Reference Tissue Models (SRTM and SRTM2), and Multilinear Reference Tissue Models (MRTM and MRTM2) were tested. The MRTM2 model provided the best correlation with MA1 binding-potential estimates. Parametric images of the volume of distribution or binding potential of [11C]P943 could be computed using both MA1 and MRTM2. The results show that [11C]P943 provides quantitative measurements of 5-HT1B binding potential.


2003 ◽  
Vol 23 (9) ◽  
pp. 1096-1112 ◽  
Author(s):  
Masanori Ichise ◽  
Jeih-San Liow ◽  
Jian-Qiang Lu ◽  
Akihiro Takano ◽  
Kendra Model ◽  
...  

The authors developed and applied two new linearized reference tissue models for parametric images of binding potential ( BP) and relative delivery ( R1) for [11C]DASB positron emission tomography imaging of serotonin transporters in human brain. The original multilinear reference tissue model (MRTMO) was modified (MRTM) and used to estimate a clearance rate ( k′2) from the cerebellum (reference). Then, the number of parameters was reduced from three (MRTM) to two (MRTM2) by fixing k′2. The resulting BP and R1 estimates were compared with the corresponding nonlinear reference tissue models, SRTM and SRTM2, and one-tissue kinetic analysis (1TKA), for simulated and actual [11C]DASB data. MRTM gave k′2 estimates with little bias (<1%) and small variability (<6%). MRTM2 was effectively identical to SRTM2 and 1TKA, reducing BP bias markedly over MRTMO from 12–70% to 1–4% at the expense of somewhat increased variability. MRTM2 substantially reduced BP variability by a factor of two or three over MRTM or SRTM. MRTM2, SRTM2, and 1TKA had R1 bias <0.3% and variability at least a factor of two lower than MRTM or SRTM. MRTM2 allowed rapid generation of parametric images with the noise reductions consistent with the simulations. Rapid parametric imaging by MRTM2 should be a useful method for human [11C]DASB positron emission tomography studies.


2015 ◽  
Vol 112 (40) ◽  
pp. 12468-12473 ◽  
Author(s):  
Christine M. Sandiego ◽  
Jean-Dominique Gallezot ◽  
Brian Pittman ◽  
Nabeel Nabulsi ◽  
Keunpoong Lim ◽  
...  

Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.


2010 ◽  
Vol 31 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Kati Alakurtti ◽  
Sargo Aalto ◽  
Jarkko J Johansson ◽  
Kjell Någren ◽  
Terhi Tuokkola ◽  
...  

Positron emission tomography (PET) imaging of small striatal brain structures such as the ventral striatum (VST) has been hampered by low spatial resolution causing partial-volume effects. The high-resolution research tomograph (HRRT) is a brain-dedicated PET scanner that has considerably better spatial resolution than its predecessors. However, its superior spatial resolution is associated with a lower signal-to-noise ratio. We evaluated the test–retest reliability of the striatal and thalamic dopamine D2 receptor binding using the HRRT scanner. Seven healthy male volunteers underwent two [11C]raclopride PET scans with a 2.5-hour interval. Dopamine D2 receptor availability was quantified as binding potential (BPND) using the simplified reference tissue model. To evaluate the reproducibility of repeated BPND estimations, absolute variability (VAR) and intraclass correlation coefficients (ICCs) were calculated. VAR values indicated fairly good reproducibility and were 3.6% to 4.5% for the caudate nucleus and putamen and 4.5% to 6.4% for the lateral and medial part of the thalamus. In the VST, the VAR value was 5.8% when the definition was made in the coronal plane. However, the ICC values were only moderate, in the range of 0.34 to 0.66, for all regions except the putamen (0.87). Experimental signal processing methods improved neither ICC nor VAR values significantly.


2017 ◽  
Vol 38 (7) ◽  
pp. 1227-1242 ◽  
Author(s):  
Mattia Veronese ◽  
Tiago Reis Marques ◽  
Peter S Bloomfield ◽  
Gaia Rizzo ◽  
Nisha Singh ◽  
...  

The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11C]PBR28 and [11C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [11C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the blocking study produced the expected reduction in the tracer concentration of the specific tissue compartment, whereas the non-displaceable compartment remained unchanged. In addition, we also studied TSPO expression in vessels using 3D reconstructions of histological data of frontal lobe and cerebellum, demonstrating that TSPO positive vessels account for 30% of the vascular volume in cortical and white matter.


Sign in / Sign up

Export Citation Format

Share Document