Evaluating the biocompatibility of marine-derived chitosan–collagen polymeric blends for biomedical applications

2017 ◽  
Vol 33 (4) ◽  
pp. 439-455 ◽  
Author(s):  
Mahadevan Raghavankutty ◽  
Geena Mariya Jose ◽  
Mohsin Sulaiman ◽  
G Muraleedhara Kurup

The capability of biomaterials such as chitosan and collagen to support cell growth and proliferation makes them promising candidates in biomedical applications. Chitosan and collagen from marine world have already been proved to be better alternatives to those from terrestrial world. In the current study, chitosan and collagen were isolated from shrimp shell and fish skin, respectively. The polymers were characterized by ultraviolet-visible spectra analysis, Fourier transform infrared-attenuated total reflectance analysis, CHN analysis, and sodium dodedcyl sulfate polyacrylamide gel electrophoresis analysis. Interpenetrating blends of these polymers were synthesized in the form of films in two different ratios. Glutaraldehyde was used as an additional cross-linker to provide more stability to the blends. The polymeric blends were also characterized by Fourier transform infrared-attenuated total reflectance, scanning electron microscopy analysis, and swelling studies. The biocompatibility evaluation included hemocompatibility and cytocompatibility studies. Fourier transform infrared-attenuated total reflectance analysis of films confirmed the presence of characteristic functional groups and molecular interactions of the two polymers in the two blends. Homogenous blending of the two biopolymers in both film compositions was confirmed by the smooth surface images in scanning electron microscopy analysis. The swelling study revealed that both the films can effectively transfer water across it, hence nutrients and waste materials. During hemocompatibility evaluations, no red blood cell aggregation was observed and both the films adsorbed plasma proteins, predominantly albumin, when they made contact with blood. Although one of the films showed slightly higher hemolysis, the value was within the acceptable range. More than 90% viability obtained in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay shows the non-toxic nature of the two films. No sign of morphological changes to L929 cells was seen when they were in direct contact with both films. Live/dead assay using acridine orange/ethidium bromide cocktail showed that the films have not induced apoptosis to the L929 cells, which further asserts their biocompatible nature.

2021 ◽  
pp. 002580242110109
Author(s):  
Sweety Sharma ◽  
Rito Chophi ◽  
Jaskirandeep Kaur Jossan ◽  
Rajinder Singh

The most important task in a criminal investigation is to detect and identify the recovered biological stains beyond reasonable scientific doubt and preserve the sample for further DNA analysis. In the light of this fact, many presumptive and confirmatory tests are routinely employed in the forensic laboratories to determine the type of body fluid. However, the currently used techniques are specific to one type of body fluid and hence it cannot be utilized to differentiate multiple body fluids. Moreover, these tests consume the samples in due process, and thus it becomes a great limitation especially considering the fact that samples are recovered in minute quantity in forensic cases. Therefore, such limitations necessitate the use of non-destructive techniques that can be applied simultaneously to all types of bodily fluids and allow sample preservation for further analysis. In the current work, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to circumvent the aforementioned limitations. The important factors which could influence the detection of blood such as the effect of substrates, washing/chemical treatment, ageing, and dilution limits on the analysis of blood have been analysed. In addition, blood discrimination from non-blood substance (biological and non-biological in nature) has also been studied. Chemometric technique that is PCA–LDA has been used to discriminate blood from other body fluids and it resulted in 100% accurate classification. Furthermore, blood and non-blood substances including fake blood have also been classified into separate clusters with a 100% accuracy, sensitivity, and specificity. All-inclusive, this preliminary study substantiates the potential application of ATR-FTIR spectroscopy for the non-destructive identification of blood traces in simulated forensic casework conditions with 0% rate of false classification.


2021 ◽  
Vol 13 (13) ◽  
pp. 1601-1611
Author(s):  
Way Koon Teoh ◽  
Noor Zuhartini Md Muslim ◽  
Md Lukmi Ismail ◽  
Kah Haw Chang ◽  
Ahmad Fahmi Lim Abdullah

Quick determination and discrimination of commercial hand sanitisers for forensic investigation.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 92065-92072 ◽  
Author(s):  
Sónia Silva ◽  
Flávia Tobaldini-Valerio ◽  
Sofia Costa-de-Oliveira ◽  
Mariana Henriques ◽  
Joana Azeredo ◽  
...  

Accurate Candida species identification remains a challenge due to their phenotypic and genotypic similarity.


Sign in / Sign up

Export Citation Format

Share Document