Effects of infused sodium acetate, sodium lactate, and sodium β-hydroxybutyrate on energy expenditure and substrate oxidation rates in lean humans R CHIOLERO, P MAVROCORDATOS, P BURNIER, ET AL Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland

1995 ◽  
Vol 10 (2) ◽  
pp. 83-83
Author(s):  
Beverly Holcombe
Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Peter T Katzmarzyk ◽  
Eric Ravussin

Introduction: African Americans (AA) experience higher rates of obesity and related disorders than the general U.S. population. It has been hypothesized that the increased risk of obesity among AA may be explained, in part, by lower levels of energy expenditure (EE) and lower levels of fat oxidation. However, many different measures of EE and substrate oxidation have been employed across previous studies. Objective: The objective of this study was to compare multiple measures of EE and substrate oxidation among White (W) and AA adults. We hypothesize that AA will have lower EE and lower fat oxidation rates than W. Methods: A sample of 12 young (ages 22 to 35 y), non-obese AA adults was recruited from the local community and pair-matched by age, sex and body mass index (BMI) to a sample of 12 W adults. Height and weight were measured and BMI was calculated (kg/m 2 ). Total fat mass (FM) and fat free mass (FFM) were measured using dual energy x-ray absorptiometry. Resting EE (REE) and respiratory quotient (RQ) were measured in a fasting state using a metabolic cart; 24-hour EE, 24-h RQ, sleep EE and sleep RQ were measured in a whole room calorimeter; and free-living total daily EE (TDEE) was measured over two weeks using doubly labelled water. Physical activity level (PAL) was computed as TDEE/REE. Differences between W and AA were determined using general linear models, adjusting for FFM. Results: The analytic sample had a mean age of 27.0 y (SD 4.3 y) and mean BMI of 22.9 kg/m 2 (SD 2.9 kg/m 2 ). There were no significant differences in age, BMI, FM or FFM between W and AA (all p>0.05). However, W had significantly higher REE (1459 vs 1305 kcal/day; p=0.001), 24-h EE (1826 versus 1737 kcal/day; p=0.02), sleep EE (1509 vs 1405 kcal/day; p=0.005); but not TDEE (2452 vs 2313 kcal/day; p=0.30) compared to AA. There were no race differences in RQ (0.83 vs 0.83; p=0.93), 24-h RQ (0.86 vs 0.88; p=0.24) or sleep RQ (0.86 vs 0.87; p=0.44). On the other hand, AA had higher PAL (1.34 vs 1.26; p=0.04) compared to W. Conclusions: Non-obese W adults demonstrated higher REE, 24-h EE, and sleep EE compared to AA, but had similar levels of free-living TDEE. It appears as though some AA adults may compensate for lower REE by increased physical activity, which may be an effective strategy to prevent weight gain and obesity.


2019 ◽  
Vol 104 (11) ◽  
pp. 5566-5572
Author(s):  
Silvio Buscemi ◽  
Davide Noto ◽  
Carola Buscemi ◽  
Anna Maria Barile ◽  
Giuseppe Rosafio ◽  
...  

Abstract Context Type 1a and 1b glycogenosis [glycogen storage disorder (GSD)1a, GSD1b] are rare diseases generally associated with malnutrition. Although abnormal substrate oxidation rates and elevated energy expenditures might contribute to malnutrition, this issue has not been investigated. Objective To investigate whether abnormal resting energy expenditure (REE) and substrate oxidation rate characterize patients with GSD1. Design Cross-sectional study Setting Outpatient referral center for rare diseases and laboratory of clinical nutrition at the University Hospital of Palermo Patients Five consecutive patients with GSD1 (4 type a, 1 type b; 3 men, 2 women; age range, 19 to 49 years) Main Outcome Measures The usual clinical procedures for patients with malnutrition, including REE and basal substrate oxidation rate (both indirect calorimetry), body composition (bioimpedance method), muscle strength (hand-grip test), and the usual laboratory tests, were performed. Results Malnutrition was clearly diagnosed in 2 patients (1 GSD1a and 1 GSD1b), with REE elevated in all five patients, and especially, in the two malnourished patients (+124% and +32.1% vs predictive values using Harris-Benedict equations). The two malnourished patients also exhibited lower basal protein oxidation rates (7.7% and 6.6%) than the nourished patients (range, 12.1% to 24.7%), with higher carbohydrate or lipid oxidation rates. Additionally, the two malnourished patients exhibited higher blood concentrations of lactic acid than the nourished patients. Conclusions According to data obtained from our small sample of patients with GSD1, elevated REEs seem to be a common characteristic that might contribute to malnutrition. Low basal protein oxidation rates and elevated blood lactic acid concentrations appear to be associated with malnutrition.


2018 ◽  
Vol 10 (1) ◽  
pp. 118-126
Author(s):  
Zübeyde Aslankeser ◽  
Şükrü Serdar Balcı

Abstract It is well known that substrate oxidation rates are increased by exercise. The present study had two main objectives: firstly, to examine the effect of a single exhaustive exercise session on post-exercise substrate oxidation and energy expenditure; and secondly, to determine the differences between athletes and non-athletes.Material and methods: Eighteen healthy male athletes (mean ± SD age; 19.38 ± 2.26 years, VO2max; 60.57 ± 3.90 ml · kg-1 · min-1, n = 8) and non-athletes (age; 20.30 ± 1.26 years, VO2max; 44.97 ± 5.43 ml · kg-1 ·min-1, n = 10) volunteered to participate in the study. After an overnight fast, subjects performed a single sprint exercise session on a cycle ergometer with individual loads (0.075 kg per body weight) until volitional exhaustion. Energy expenditure (EE) and the substrate oxidation rate were measured at rest and during the post-exercise recovery period using indirect calorimetry. Results: Exhaustive exercise significantly increased post-exercise fat oxidation, energy expenditure and contribution of fat to EE (p < 0.05). Also, it significantly decreased post-exercise carbohydrate (CHO) oxidation and the contribution of CHO to EE (p < 0.05). However, the changes in the substrate oxidation rate and EE after the exercise test were not different between the groups (p > 0.05). Conclusions: The study results suggest that a single short-duration exhaustive exercise session causes a higher fat oxidation rate during recovery than at rest, whereas training status did not affect this situation


Metabolism ◽  
1994 ◽  
Vol 43 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Benjamin Buemann ◽  
Arne Astrup ◽  
Flemming Quaade ◽  
Joop Madsen

2016 ◽  
Vol 41 (11) ◽  
pp. 1204-1207 ◽  
Author(s):  
Laurie Isacco ◽  
Ophélie Ritter ◽  
Nicolas Tordi ◽  
Davy Laroche ◽  
Bruno Degano ◽  
...  

This study investigated substrate oxidation in concentric and eccentric cycling matched for aerobic power output in the postprandial state. Energy expenditure, respiratory exchange ratio, and fat and carbohydrate oxidation rates were measured at rest and after 15, 30, and 45 min of eccentric and concentric cycling in 12 men. Absolute and relative aerobic power output and energy expenditure were similar during concentric and eccentric exercise. No effect of exercise modality was observed for substrate metabolism.


Sign in / Sign up

Export Citation Format

Share Document