Near-Infrared Spectroscopy in Adult Circulatory Shock: A Systematic Review

2020 ◽  
Vol 35 (10) ◽  
pp. 943-962 ◽  
Author(s):  
Elina Varis ◽  
Ville Pettilä ◽  
Erika Wilkman

Background: Circulatory shock affects every third patient in intensive care units and is associated with high mortality. Near-infrared spectroscopy (NIRS) could serve as a means for monitoring tissue perfusion in circulatory shock. Purpose: To assess the evidence of NIRS monitoring in circulatory shock, we conducted a systematic review of the literature. Methods: The study protocol was registered in International Prospective Register of Systematic Reviews (PROSPERO). We searched PubMed, Ovid MEDLINE, Scopus, and EBM Reviews databases. The reference lists of included articles, last volumes of key journals, and NIRS monitor manufacturers’ webpages were searched manually. Two reviewers independently selected included studies. The quality of studies was assessed. The qualitative synthesis was guided by 3 questions: First, does NIRS monitoring improve patient-centered outcomes in adult circulatory shock patient? Second, do NIRS-derived parameters predict patient-centered outcomes, such as mortality and organ dysfunction, and third, does NIRS monitoring give additional information to guide treatment decisions? Main Results: Eighteen observational studies with 927 patients were included. Because of considerable clinical heterogeneity of the data, we were not able to perform a meta-analysis. Also, due to lack of randomized controlled trials, the first review question could not be answered. Based on the current review, baseline tissue oxygen saturation (StO2) however seems to predict mortality and identify patients with most severe forms of circulatory shock. Conclusions: Near-infrared spectroscopy-derived StO2 can predict mortality in circulatory shock, but high-quality data on the impact of NIRS monitoring are lacking. Furthermore, the marked heterogeneity of the studies makes combining the results of individual studies difficult. Standardization of methodology and clinical randomized trials are needed before wider clinical use.

2021 ◽  
pp. 088506662199709
Author(s):  
Michael D. Wood ◽  
J. Gordon Boyd ◽  
Nicole Wood ◽  
James Frank ◽  
Timothy D. Girard ◽  
...  

Background: Several studies have previously reported the presence of altered cerebral perfusion during sepsis. However, the role of non-invasive neuromonitoring, and the impact of altered cerebral perfusion, in sepsis patients with delirium remains unclear. Methods: We performed a systematic review of studies that used near-infrared spectroscopy (NIRS) and/or transcranial Doppler (TCD) to assess adults (≥18 years) with sepsis and delirium. From study inception to July 28, 2020, we searched the following databases: Ovid MedLine, Embase, Cochrane Library, and Web of Science. Results: Of 1546 articles identified, 10 met our inclusion criteria. Although NIRS-derived regional cerebral oxygenation was consistently lower, this difference was only statistically significant in one study. TCD-derived cerebral blood flow velocity was inconsistent across studies. Importantly, both impaired cerebral autoregulation during sepsis and increased cerebrovascular resistance were associated with delirium during sepsis. However, the heterogeneity in NIRS and TCD devices, duration of recording (from 10 seconds to 72 hours), and delirium assessment methods (e.g., electronic medical records, confusion assessment method for the intensive care unit), precluded meta-analysis. Conclusion: The available literature demonstrates that cerebral perfusion disturbances may be associated with delirium in sepsis. However, future investigations will require consistent definitions of delirium, delirium assessment training, harmonized NIRS and TCD assessments (e.g., consistent measurement site and length of recording), as well as the quantification of secondary and tertiary variables (i.e., Cox, Mxa, MAPOPT), in order to fully assess the relationship between cerebral perfusion and delirium in patients with sepsis.


2020 ◽  
Vol 57 (6) ◽  
pp. 341-347
Author(s):  
Jaeyeon Chung ◽  
Sang-Hwan Ji ◽  
Young-Eun Jang ◽  
Eun-Hee Kim ◽  
Ji-Hyun Lee ◽  
...  

Near-infrared spectroscopy devices can measure peripheral tissue oxygen saturation (StO<sub>2</sub>). This study aims to compare StO<sub>2</sub> using INVOS® and different O3™ settings (O3<sup>25:75</sup> and O3<sup>30:70</sup>). Twenty adults were recruited. INVOS® and O3™ probes were placed simultaneously on 1 side of forearm. After baseline measurement, the vascular occlusion test was initiated. The baseline value, rate of deoxygenation and reoxygenation, minimum and peak StO<sub>2</sub>, and time from cuff release to peak value were measured. The parameters were compared using ANOVA and Kruskal-Wallis tests. Bonferroni’s correction and Mann-Whitney pairwise comparison were used for post hoc analysis. The agreement between StO<sub>2</sub> of devices was evaluated using Bland-Altman plots. INVOS® baseline value was higher (79.7 ± 6.4%) than that of O3<sup>25:75</sup> and O3<sup>30:70</sup> (62.4 ± 6.0% and 63.7 ± 5.5%, respectively, <i>p</i> &#x3c; 0.001). The deoxygenation rate was higher with INVOS® (10.6 ± 2.1%/min) than with O3<sup>25:75</sup> and O3<sup>30:70</sup> (8.4 ± 2.2%/min, <i>p</i> = 0.006 and 7.5 ± 2.1%/min, <i>p</i> &#x3c; 0.001). The minimum and peak StO<sub>2</sub> were higher with INVOS®. No significant difference in the reoxygenation rate was found between the devices and settings. The time to reach peak after cuff deflation was faster with INVOS® (both <i>p</i> &#x3c; 0.001). Other parameters were similar. There were no differences between the different O3™ settings. There were differences in StO<sub>2</sub> measurements between the devices, and these devices should not be interchanged. Differences were not observed between O3™ device settings.


Critical Care ◽  
2009 ◽  
Vol 13 (Suppl 1) ◽  
pp. P239
Author(s):  
R Kopp ◽  
S Rex ◽  
K Dommann ◽  
G Schälte ◽  
G Dohmen ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5573
Author(s):  
Masatsugu Niwayama ◽  
Naoki Unno

Tissue oxygenation sensing at a few millimeters deep is useful for surgical and postoperative management. However, the measurement sensitivity at each depth and the proper sensor combination have not been clarified. Here, the measurement characteristics of oximetry by spatially resolved near-infrared spectroscopy were analyzed using Monte Carlo simulation and phantom experiment. From summing the sensitivities of each depth, it was quantitatively found that the measurement sensitivity curve had a peak, and the measurement depth can be adjusted by combining the two distances between the light source and the detector. Furthermore, the gastric tissue was 10–20% smaller in terms of measurement depth than the skin-subcutaneous tissue. A miniaturized oximeter was prototyped so that it could be used in combination with an endoscope or laparoscope. The optical probes consisted of light emitting diodes with wavelengths of 770 nm and 830 nm and photodetectors located 3 to 30 mm from the light source. Phantom experiments using the probes demonstrated the tendency of theoretical analysis. These results suggest the possibility of measuring tissue oxygen saturation with a selectable measurement depth. This selectable method will be useful for obtaining oxygenation information at a depth of 2–5 mm, which is difficult to measure using only laparoscopic surface imaging.


2020 ◽  
Author(s):  
Oselyne Ong ◽  
Elise Kho ◽  
Pedro Esperança ◽  
Chris Freebairn ◽  
Floyd Dowell ◽  
...  

Abstract Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field. Methods: NIR spectra from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days old) were compared to spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days old). Different partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on their ability to predict the age of mosquitoes from more natural environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principle component analysis confirms substantial spectral variations between laboratory and field-derived mosquitoes despite both originating from the same island population. Conclusions: Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Leeann R. Pavlek ◽  
Clifford Mueller ◽  
Maria R. Jebbia ◽  
Matthew J. Kielt ◽  
Omid Fathi

With advances in neonatal care, survival of premature infants at the limits of viability has improved significantly. Despite these improvement in mortality, infants born at 22–24 weeks gestation are at a very high risk for short- and long-term morbidities associated with prematurity. Many of these diseases have been attributed to abnormalities of tissue oxygenation and perfusion. Near-infrared spectroscopy utilizes the unique absorption properties of oxyhemoglobin and deoxyhemoglobin to provide an assessment of regional tissue oxygen saturation, which can be used to calculate the fractional tissue oxygen extraction. This allows for a non-invasive way to monitor tissue oxygen consumption and enables targeted hemodynamic management. This mini-review provides a brief and complete overview of the background and physiology of near-infrared spectroscopy, practical use in extremely preterm infants, and potential applications in the neonatal intensive care unit. In this mini-review, we aim to summarize the three primary application sites for near-infrared spectroscopy, disease-specific indications, and available literature regarding use in extremely preterm infants.


2018 ◽  
Vol 53 (8) ◽  
pp. 782-787
Author(s):  
Babak Shadgan ◽  
Amir H. Pakravan ◽  
Alison Hoens ◽  
W. Darlene Reid

Context:  Contrast baths (CB) is a thermal treatment modality used in sports medicine, athletic training, and rehabilitation settings. Proposed physiological effects of CB include increasing tissue blood flow and oxygenation and decreasing tissue swelling and edema to promote better healing, improved limb function, and quicker recovery. Objective:  To investigate the physiological effects of CB on the intramuscular hemodynamics and oxygenation of the lower leg muscles using near-infrared spectroscopy (NIRS), an optical method for monitoring changes in tissue oxygenated (O2Hb), deoxygenated (HHb), and total hemoglobin (tHb) as well as tissue oxygen saturation index (TSI%). Design:  Descriptive laboratory study. Patients or Other Participants:  Ten healthy men and women with a mean age of 29 (range = 17 ± 42) years, mean body mass index of 24.6 ± 3.2, and mean adipose tissue thickness of 6.4 ± 2.2 mm. Intervention(s):  Conventional CB (10-minute baseline, 4 : 1-minute hot : cold ratio) was applied to the left lower leg. Main Outcome Measure(s):  Changes in chromophore concentrations of O2Hb, HHb, tHb, and TSI% of the gastrocnemius muscle were monitored during 10 minutes of baseline measurement, a 30-minute CB protocol, and 10 minutes of recovery using a spatially resolved NIRS. Results:  After a 30-minute CB protocol, increases (P &lt; .05) in tissue O2Hb (7.4 ± 4 μM), tHb (7.6 ± 6.1 μM), and TSI% (3.1% ± 2.3%) were observed as compared with baseline measures. Conclusions:  Application of CB induced a transient change in the hemodynamics and oxygenation of the gastrocnemius muscle in healthy individuals. The effect of CB application in improving tissue hemodynamics and oxygenation may, therefore, support the therapeutic benefits of CB in the treatment of muscle injuries.


Sign in / Sign up

Export Citation Format

Share Document