In vivo tissue response and antibacterial efficacy of minocycline delivery system based on polymethylmethacrylate bone cement

2018 ◽  
Vol 33 (3) ◽  
pp. 380-391 ◽  
Author(s):  
Tiago Silva ◽  
Jose C Silva ◽  
Bruno Colaco ◽  
Adelina Gama ◽  
Margarida Duarte-Araújo ◽  
...  

This study aims the in vivo biological characterization of an innovative minocycline delivery system, based on polymethylmethacrylate bone cement. Bone cements containing 1% or 2.5% (w/w) minocycline were formulated and evaluated through solid-state characterization. Biological evaluation was conducted in vivo, within a rat model, following the subcutaneous and bone tissue implantation, and tissue implantation associated with Staphylococcus aureus is challenging. The assessment of the tissue/biomaterial interaction was conducted by histologic, histomorphometric and microtomographic techniques. Minocycline addition to the composition of the polymethylmethacrylate bone cement did not modify significantly the cement properties. Drug release profile was marked by an initial burst release followed by a low-dosage sustained release. Following the subcutaneous tissue implantation, a reduced immune-inflammatory reaction was verified, with diminished cell recruitment and a thinner fibro-connective capsule formation. Minocycline-releasing cements were found to enhance the bone-to-implant contact and bone tissue formation, following the tibial implantation. Lastly, an effective antibacterial activity was mediated by the implanted cement following the tissue challenging with S. aureus. Kinetic minocycline release profile, attained with the developed polymethylmethacrylate system, modulated adequately the in vivo biological response, lessening the immune-inflammatory activation and enhancing bone tissue formation. Also, an effective in vivo antibacterial activity was established. These findings highlight the adequacy and putative application of the developed system for orthopedic applications.

2018 ◽  
Vol 13 (2) ◽  
pp. 025004 ◽  
Author(s):  
M Rampichová ◽  
J Chvojka ◽  
V Jenčová ◽  
T Kubíková ◽  
Z Tonar ◽  
...  

2017 ◽  
Vol 45 (9) ◽  
pp. 2075-2087 ◽  
Author(s):  
Zheng Jing ◽  
Yeke Wu ◽  
Wen Su ◽  
Mi Tian ◽  
Wenlu Jiang ◽  
...  

2014 ◽  
pp. 4277 ◽  
Author(s):  
Antonio Barrientos-Duran ◽  
Ellen M. Carpenter ◽  
Nicole I. zur Nieden ◽  
Theodore I. Malinin ◽  
Juan Carlos Rodriguez-Manzaneque ◽  
...  

2007 ◽  
Vol 330-332 ◽  
pp. 1091-1094
Author(s):  
H. Kim ◽  
M. Park ◽  
Su Young Lee ◽  
Kang Yong Lee ◽  
Hyun Min Kim ◽  
...  

Demineralized bone matrix (DBM)-calcium phosphate cement (CPC) composites were subjected to cellular test of osteogenic potentials and implantation in animal model. The expression of osteogenic marker gene from mouse preosteoblast cell line MC3T3-E1 adhered to the DBM-CPC composite was much higher than plain CPC. In addition, the DBM-CPC composite implanted nude mice revealed osteoinduction between the implanted composite and adjacent tissues, whereas the plain CPC induced osteoconduction.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


Nanomedicine ◽  
2020 ◽  
Vol 15 (20) ◽  
pp. 1995-2017
Author(s):  
Guo Ye ◽  
Fangyuan Bao ◽  
Xianzhu Zhang ◽  
Zhe Song ◽  
Youguo Liao ◽  
...  

The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.


Sign in / Sign up

Export Citation Format

Share Document