Hemostatic wound dressings: Predicting their effects by in vitro tests

2019 ◽  
Vol 33 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
Cornelia Wiegand ◽  
Martin Abel ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Michael Zieger ◽  
...  

Background Application of controlled in vitro techniques can be used as a screening tool for the development of new hemostatic agents allowing quantitative assessment of overall hemostatic potential. Materials and methods Several tests were selected to evaluate the efficacy of cotton gauze, collagen, and oxidized regenerated cellulose for enhancing blood clotting, coagulation, and platelet activation. Results Visual inspection of dressings after blood contact proved the formation of blood clots. Scanning electron microscopy demonstrated the adsorption of blood cells and plasma proteins. Significantly enhanced blood clot formation was observed for collagen together with β-thromboglobulin increase and platelet count reduction. Oxidized regenerated cellulose demonstrated slower clotting rates not yielding any thrombin generation; yet, led to significantly increased thrombin-anti-thrombin-III complex levels compared to the other dressings. As hemostyptica ought to function without triggering any adverse events, induction of hemolysis, instigation of inflammatory reactions, and initiation of the innate complement system were also tested. Here, cotton gauze provoked high PMN elastase and elevated SC5b-9 concentrations. Conclusions A range of tests for desired and undesired effects of materials need to be combined to gain some degree of predictability of the in vivo situation. Collagen-based dressings demonstrated the highest hemostyptic properties with lowest adverse reactions whereas gauze did not induce high coagulation activation but rather activated leukocytes and complement.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 110 ◽  
Author(s):  
Angélica Graça ◽  
Lídia Gonçalves ◽  
Sara Raposo ◽  
Helena Ribeiro ◽  
Joana Marto

Polymer-based eye drops are the most used drug delivery system to treat dry eye disease (DED). Therefore, the mucoadhesion between the polymer and the ocular mucin is crucial to ensure the efficacy of the treatment. In this context, the present study aimed to evaluate the potential use of in vitro methods to study the mucoadhesion of eye drop solutions and, specifically to evaluate the efficacy of two hyaluronic acid-based formulations (HA), HA 0.15% and 0.30% (w/v) to treat DED. Rheology methods and zeta potential determination were used to study the mucoadhesive properties of both eye drop solutions. All results indicated that interactions occurred between the mucin and the HA, being stronger with HA 0.30%, due to the physical entanglements and hydrogen bounding. In vitro tests on ARPE-19 cell line were performed using a 2D and a 3D dry eye model and the results have shown that pre-treated cells with HA showed a morphology more similar to the hydrated cells in both products, with a high survival rate. The in vitro techniques used in this study have been shown to be suitable to evaluate and predict mucoadhesive properties and the efficacy of the eye drops on relief or treatment of DED. The results obtained from these methods may help in inferring possible in vivo effects.


Author(s):  
Shijia Wang ◽  
Xiaoli Liu ◽  
Miao Lei ◽  
Junjie Sun ◽  
Xue Qu ◽  
...  

AbstractThe contamination of chronic wound with bacteria especially methicillin-resistant Staphylococcus aureus (MRSA) is considered as the major factor interferencing normal wound healing. There still remain great challenges in developing safe and effective wound dressings with wide-spectrum antibacterial functions. Alginate hydrogel is a common dressing for wound treatment. Copper is one of the trace elements in human body with inherent antibacterial activity. Traditional methods for preparing a structure-controlled copper-alginate antibacterial matrix are difficult however, due to the fast and uncontrolled gelation between alginate and metal ions. In this work, we report an electrodeposition method for rapid fabrication of copper cross-linked alginate antibacterial films (Cu2+-Alg) with controlled structure and copper content, which is relied on an electrical signal controlled release of copper ions from the reaction of insoluble salt Cu2(OH)2CO3 and the generated protons via water electrolysis on anode. The results prove that the physical structure and chemical composition of the electrodeposited Cu2+-Alg films can be continuously modulated by the imposed charges during electrodeposition. In vitro tests demonstrate the film has Cu2+ content-dependent bactericidal activities. Film’s cytocompatibility is well controlled by the imposed charges for Cu2+-Alg fabrication. The MRSA infected wound model in vivo also indicates that Cu2+-Alg film can effectively eliminate bacterial infection and suppress host inflammatory responses. We believe this study demonstrates a convenient and controllable strategy to fabricate alginate antibacterial dressings with potential applications for infected wound treatment. More broadly, our work reveals electrodeposition is a general and simple platform to design alginate films with versatile functions.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


1963 ◽  
Vol 10 (01) ◽  
pp. 106-119 ◽  
Author(s):  
E Beck ◽  
R Schmutzler ◽  
F Duckert ◽  

SummaryInhibitor of kallikrein and trypsin (KI) extracted from bovine parotis was compared with ε-aminocaproic acid (EACA): both substances inhibit fibrinolysis induced with streptokinase. EACA is a strong inhibitor of fibrinolysis in concentrations higher than 0, 1 mg per ml plasma. The same amount and higher concentrations are not able to inhibit completely the proteolytic-side reactions of fibrinolysis (fibrinogenolysis, diminution of factor V, rise of fibrin-polymerization-inhibitors). KI inhibits well proteolysis of plasma components in concentrations higher than 2,5 units per ml plasma. Much higher amounts of KI are needed to inhibit fibrinolysis as demonstrated by our in vivo and in vitro tests.Combination of the two substances for clinical use is suggested. Therapeutic possibilities are discussed.


2011 ◽  
Vol 3 (5) ◽  
pp. 491-494
Author(s):  
Dr. Haritha Kumari Nimmagadda ◽  
◽  
Pooja Pant Pooja Pant ◽  
Rajeev Mukhia ◽  
Dr. Aruna Mukherjee

2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


1985 ◽  
Vol 13 (4) ◽  
pp. 261-266
Author(s):  
P.P. Monro ◽  
D.P. Knight ◽  
W.S. Pringle ◽  
D.M. Fyfe ◽  
J.R. Shearer

The toxicity of implant materials requires investigation prior to clinical use. We have developed a method where materials are directly applied to the chorioallantoic membrane (CAM) of 9-day-old chick embryos and toxicity is assessed using histological criteria. We evaluated the method using metal foils. The number and organisation of fibroblasts seemed to be the most useful criteria for assessing metal toxicity. Differences were greatest after 10 days of culture on the CAM. The method is sensitive enough to enable us to discriminate between the less toxic aluminium and titanium and the highly toxic cobalt, nickel and tungsten. The proposed method has advantages over in vitro techniques which provide an abnormal fluid environment and in which the more complex interactions that are possible between implant materials and tissue in vivo cannot be modelled.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


Sign in / Sign up

Export Citation Format

Share Document