Inhibition of Fibrinolysis and Fibrinogenolysis in Man: Comparison of ε-Aminocaproic Acid and Kallikrein Inhibitor

1963 ◽  
Vol 10 (01) ◽  
pp. 106-119 ◽  
Author(s):  
E Beck ◽  
R Schmutzler ◽  
F Duckert ◽  

SummaryInhibitor of kallikrein and trypsin (KI) extracted from bovine parotis was compared with ε-aminocaproic acid (EACA): both substances inhibit fibrinolysis induced with streptokinase. EACA is a strong inhibitor of fibrinolysis in concentrations higher than 0, 1 mg per ml plasma. The same amount and higher concentrations are not able to inhibit completely the proteolytic-side reactions of fibrinolysis (fibrinogenolysis, diminution of factor V, rise of fibrin-polymerization-inhibitors). KI inhibits well proteolysis of plasma components in concentrations higher than 2,5 units per ml plasma. Much higher amounts of KI are needed to inhibit fibrinolysis as demonstrated by our in vivo and in vitro tests.Combination of the two substances for clinical use is suggested. Therapeutic possibilities are discussed.

1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


2014 ◽  
Vol 61 (4) ◽  
Author(s):  
Gabriela Mojžišová ◽  
Ján Mojžiš ◽  
Janka Vašková

Metal-containing drugs have long been used for medicinal purposes in more or less empirical way. The potential of these anticancer agents has only been fully realised and explored since the discovery of the biological activity of cisplatin. Cisplatin and carboplatin have been two of the most successful anti-cancer agents ever developed, and are currently used to treat ovarian, lung and testicular cancers. They share certain side effects, so their clinical use is severely limited by dose-limiting toxicity. Inherent or acquired resistance is a second problem often associated with platinum-based drugs, with further limits of their clinical use. These problems have prompted chemists to employ different strategies in development of the new metal-based anticancer agents with different mechanisms of action. There are various metal complexes still under development and investigation for the future cancer treatment use. In the search for novel bio-organometallic molecules, iron containing anti-tumoral agents are enjoying an increasing interest and appear very promising as the potential drug candidates. Iron, as an essential cofactor in a number of enzymes and physiological processes, may be less toxic than non essential metals, such as platinum. Up to now, some of iron complexes have been tested as cytotoxic agents and found to be endowed with an antitumor activity in several in vitro tests (on cultured cancer cell lines) and few in vivo experiments (e. g. on Ehrlich's ascites carcinoma). Although the precise molecular mechanism is yet to be defined, a number of observations suggest that the reactive oxygen species can play important role in iron-induced cytotoxicty. This review covers some relevant examples of research on the novel iron complexes.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


1974 ◽  
Vol 31 (03) ◽  
pp. 420-428 ◽  
Author(s):  
M Fainaru ◽  
S Eisenberg ◽  
N Manny ◽  
C Hershko

SummaryThe natural course of defibrination syndrome caused by Echis colorata venom (ECV) in five patients is reported. All patients developed afibrinogenemia within six hours after the bite. Concomitantly a depression in factor V was recorded. Factor VIII and thrombocyte count in blood were normal in most patients. In the light of the known effects of ECV on blood coagulation in vivo and in vitro it is concluded that the afibrinogenemia is due to intravascular clotting.Four patients had transient renal damage, manifested by oliguria, azotemia, albuminuria and cylindruria, ascribed to microthrombi in the renal glomeruli.After the bite, the natural course was benign, no major bleeding was observed, and all signs of coagulopathy reverted to normal within 7 days. Therefore we recommend no specific treatment for this condition. In the case of heavily bleeding patients, administration of antiserum against ECV and/or heparin should be considered.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


2019 ◽  
Vol 25 (36) ◽  
pp. 3872-3880 ◽  
Author(s):  
Marcel M. Bergmann ◽  
Jean-Christoph Caubet

Severe cutaneous adverse reactions (SCAR) are life-threatening conditions including acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Diagnosis of causative underlying drug hypersensitivity (DH) is mandatory due to the high morbidity and mortality upon re-exposure with the incriminated drug. If an underlying DH is suspected, in vivo test, including patch tests (PTs), delayed-reading intradermal tests (IDTs) and in vitro tests can be performed in selected patients for which the suspected culprit drug is mandatory, or in order to find a safe alternative treatment. Positivity of in vivo and in vitro tests in SCAR to drug varies depending on the type of reaction and the incriminated drugs. Due to the severe nature of these reactions, drug provocation test (DPT) is highly contraindicated in patients who experienced SCAR. Thus, sensitivity is based on positive test results in patients with a suggestive clinical history. Patch tests still remain the first-line diagnostic tests in the majority of patients with SCAR, followed, in case of negative results, by delayed-reading IDTs, with the exception of patients with bullous diseases where IDTs are still contra-indicated. In vitro tests have shown promising results in the diagnosis of SCAR to drug. Positivity is particularly high when the lymphocyte transformation test (LTT) is combined with cytokines and cytotoxic markers measurement (cyto-LTT), but this still has to be confirmed with larger studies. Due to the rarity of SCAR, large multi-center collaborative studies are needed to better study the sensitivity and specificity of in vivo and in vitro tests.


2019 ◽  
Vol 33 (9) ◽  
pp. 1285-1297 ◽  
Author(s):  
Cornelia Wiegand ◽  
Martin Abel ◽  
Uta-Christina Hipler ◽  
Peter Elsner ◽  
Michael Zieger ◽  
...  

Background Application of controlled in vitro techniques can be used as a screening tool for the development of new hemostatic agents allowing quantitative assessment of overall hemostatic potential. Materials and methods Several tests were selected to evaluate the efficacy of cotton gauze, collagen, and oxidized regenerated cellulose for enhancing blood clotting, coagulation, and platelet activation. Results Visual inspection of dressings after blood contact proved the formation of blood clots. Scanning electron microscopy demonstrated the adsorption of blood cells and plasma proteins. Significantly enhanced blood clot formation was observed for collagen together with β-thromboglobulin increase and platelet count reduction. Oxidized regenerated cellulose demonstrated slower clotting rates not yielding any thrombin generation; yet, led to significantly increased thrombin-anti-thrombin-III complex levels compared to the other dressings. As hemostyptica ought to function without triggering any adverse events, induction of hemolysis, instigation of inflammatory reactions, and initiation of the innate complement system were also tested. Here, cotton gauze provoked high PMN elastase and elevated SC5b-9 concentrations. Conclusions A range of tests for desired and undesired effects of materials need to be combined to gain some degree of predictability of the in vivo situation. Collagen-based dressings demonstrated the highest hemostyptic properties with lowest adverse reactions whereas gauze did not induce high coagulation activation but rather activated leukocytes and complement.


1995 ◽  
Vol 23 (4) ◽  
pp. 491-496
Author(s):  
Hanna Tähti ◽  
Leila Vaalavirta ◽  
Tarja Toimela

— There are several hundred industrial chemicals with neurotoxic potential. The neurotoxic risks of most of these chemicals are unknown. Additional methods are needed to assess the risks more effectively and to elucidate the mechanisms of neurotoxicity more accurately than is possible with the conventional methods. This paper deals with general tasks concerning the use of in vitro models in the evaluation of neurotoxic risks. It is based on our previous studies with various in vitro models and on recent literature. The induction of glial fibrillary acidic protein in astrocyte cultures after treatment with known neurotoxicants (mercury compounds and aluminium) is discussed in more detail as an important response which can be detected in vitro. When used appropriately with in vivo tests and with previous toxicological data, in vitro neurotoxicity testing considerably improves risk assessment. The incorporation of in vitro tests into the early stages of risk evaluation can reduce the number of animals used in routine toxicity testing, by identifying chemicals with high neurotoxic potential.


Sign in / Sign up

Export Citation Format

Share Document