The evolution of morphology, crystallization and static and dynamic mechanical properties of long glass-fibre–reinforced polypropylene composites under thermo-oxidative ageing

2018 ◽  
Vol 32 (4) ◽  
pp. 544-557 ◽  
Author(s):  
Jing Zhang ◽  
Weidi He ◽  
Yifan Wu ◽  
Na Wang ◽  
Xiaolang Chen ◽  
...  

In this work, the static and dynamic mechanical properties, crystallization behaviours, and morphology of long glass-fibre–reinforced polypropylene (PP) composites with thermo-oxidative ageing time from 0 day to 50 days at 120°C were investigated and discussed. The static mechanical properties showed a global decrease in tensile, bending and impact strengths with increasing ageing time. From the results obtained by scanning electronic microscopic observations, interface debonding clearly occurred between the glass fibre and PP matrix in the aged samples. The crystallinity ( Xc) of the composites was analyzed by differential scanning calorimetry; annealing process played the leading role in the early period of ageing, while as ageing progressed, the degradation of PP matrix dominated the ageing process and Xc decreased. The dynamic mechanical analysis results indicated that the storage modulus and glass transition temperature of the composites also decreased with prolonging ageing time. Then, the apparent activation energy ( E) of glass transition was calculated by the Arrhenius equation with different scanning frequencies. A higher value of E was obtained for the samples in the later ageing period, which means a higher energy barrier for glass transition.

2018 ◽  
Vol 5 (9) ◽  
pp. 095304 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Lin Feng Ng ◽  
Kin How Chan ◽  
Kathiravan Subramaniam ◽  
Mohd Zulkefli Selamat ◽  
...  

Author(s):  
J. Lilly Mercy ◽  
S. Prakash

Self-healing polymeric materials developed in the last decade is one of the marvels in the field of material science and polymer chemistry. Self-healing Glass Fibre Reinforced Plastics (GFRP) was fabricated with the microcapsule based self-healing system which can be triggered by the catalyst, when the capsule breaks open releasing the healing agent, during crack formation. The dynamic mechanical properties of the composite were assessed to find its dependence on temperature, stress and frequency and to report the changes in stiffness and damping. The storage modulus, loss modulus and damping factor were investigated for various frequencies and temperature and discussed.


1989 ◽  
Vol 62 (2) ◽  
pp. 305-314 ◽  
Author(s):  
K. A. Mazich ◽  
P. C. Killgoar ◽  
J. A. Ingram

Abstract A method for calculating the dynamic mechanical properties of elastomer blends with co-continuous structures has been presented. The calculations are based on Kerner's packed-grain model for composite media. Comparisons of theoretical calculations with experimental data show that this model closely approximates the viscoelastic properties of blends with a co-continuous structure, at least in the glass-transition regions of the respective blend components. We have also shown that the storage modulus of co-continuous blends may be well-represented by a discrete-particle model. This result can be misleading, however, if the storage modulus alone is calculated and compared with experimental data. A comparison of viscoelastic data (log E′ and tan δ) with calculation clearly distinguishes the models and indicates that the packed-grain model is the correct representation of the structure of co-continuous blends. The agreement between theory and experiment reported above was principally found in the glass-transition regions of the respective components in the elastomer blend. We extended the comparison well into the rubbery region and found that the agreement between Kerner's mean-field theory and the experimental data was poor, particularly for the loss tangent. Different relaxation mechanisms (relaxations over greater periods of time) are available to the blend in the rubbery region of viscoelastic response, and these mechanisms are apparently not accounted for in the mean-field calculations.


Sign in / Sign up

Export Citation Format

Share Document