Three-Dimensional Localization of DNA Synthesis in Secretory Elements of Adult Female Mouse Submandibular Gland

1990 ◽  
Vol 4 (1) ◽  
pp. 34-44 ◽  
Author(s):  
P.C. Denny ◽  
Y. Chai ◽  
D.K. Klauser ◽  
P.A. Denny

A system based in part on three-dimensional structural relationships is described for precisely characterizing the location of cells within secretory complexes of the adult female mouse submandibular gland. The pattern of DNA synthesis during a 90-minute pulse with 3H-thymidine was characterized based upon the above system. Seventy-eight percent of all radiolabeled nuclei were found in the intercalated duct system. One-half of these were in second-order intercalated ducts. DNA synthesis was also observed in acinar cells, granular intercalated duct cells, striated granular duct cells, and granular duct cells. Some secretory complexes contained multiple radiolabeled nuclei, with some of these nuclei in a side-by-side configuration. Approximately one-half of all secretory complexes contained radiolabeled nuclei. A second survey of the frequency of complexes containing radiolabeled nuclei was conducted following four pulses at eight-hour intervals over a 26-hour period. Only about 30% of all complexes contained radiolabeled nuclei. This reduction in the frequency of radiolabeled nuclei when compared with the single pulse suggests the possibility of individual variation. However, a more prolonged period of daily injections for nine days with 3H-thymidine resulted in all but one of the secretory complexes containing radiolabeled nuclei. This latter observation suggests that cell addition in adult submandibular glands is widespread.

1987 ◽  
Vol 35 (10) ◽  
pp. 1053-1058 ◽  
Author(s):  
J I Morrell ◽  
E W Gresik ◽  
T Barka

Mouse submandibular glands show an androgen-dependent sexual dimorphism, reflected in higher concentrations in males than in females of bioactive peptides, such as epidermal growth factor (EGF), nerve growth factor, and renin in the cells of the granular convoluted tubules (GCT). Biochemical studies have demonstrated androgen receptors in submandibular gland and other androgen-responsive organs in mouse. We have determined the cellular localization of these receptors using steroid autoradiography. Fifteen adult gonadectomized male mice were injected intravenously with 0.13 microgram or 0.26 microgram [3H]-dihydrotestosterone (SA 135 Ci/mM); some animals were pre-treated with cyclocytidine to stimulate secretion by GCT cells. Animals were killed 15 min, 1, 2, or 3 hr after isotope injection. Steroid autoradiographs were prepared, and some were stained immunocytochemically for EGF. Of the different cell types of submandibular gland, the acinar cells most frequently and intensely concentrated [3H]-DHT; GCT cells also concentrated the hormone, as did a small number of striated duct cells. In the other major salivary glands, the only cells that concentrated the androgen were interlobular striated duct cells in sublingual gland. In prostate, anterior pituitary, and brain a large number of cells concentrated androgen, as has been previously reported. Androgen binding by the GCT cells was a predictable finding, since androgen-induced alterations in composition and form of these cells are well documented. The intense androgen concentration by the acinar cells was an unexpected finding and suggests a hitherto unknown androgen regulation of these cells. An incidental finding was intense concentration of [3H]-DHT in the nuclei of the endothelial cells of the post-capillary venules of the cervical lymph nodes.


1984 ◽  
Vol 247 (6) ◽  
pp. G667-G673
Author(s):  
P. S. Oates ◽  
R. G. Morgan

Pancreatic acinar cell turnover was studied after a 48-h fast and in rats fed raw soya flour (RSF) for up to 28 days. Feeding RSF for 2 days resulted in a significant increase in pancreatic weight and RNA content while protein was increased by the 4th day compared with rats fasted for 48 h. RSF also resulted in a significant increase in RNA by the 4th day and weight and protein by the 7th day compared with rats fed heated soya flour (HSF). This pancreatic hypertrophy was maintained for the rest of the study period. Two days after starting RSF, pancreatic DNA synthesis, measured bythe rate of incorporation of [3H]thymidine into pancreatic DNA, had increased sixfold compared with that in animals fedHSF but returned to control values again by the 4th day on the diet. Autoradiography showed that this increase in DNA synthesis occurred in both acinar and duct cells, with turnover in acinar cells preceding that in duct cells. A second moregradual rise in DNA synthesis was seen from the 7th to 28th day. This peak in DNA synthesis was associated with an increased total pancreatic DNA content and occurred predominately in duct cells with a smaller contribution from acinar cells. Histological studies of the pancreas during the 1st wk showed cell damage and tissue necrosis, possibly due to exposure to high levels of cholecystokinin released by RSF. The first peak in DNA synthesis may be a regenerative response to this damage. The second more delayed peak appears to be hyperplasia in response to a trophic stimulus, again possibly mediated by cholecystokinin.


2010 ◽  
Vol 299 (4) ◽  
pp. F740-F751 ◽  
Author(s):  
Wen-Chin Lee ◽  
Melinda T. Hough ◽  
Weijia Liu ◽  
Robert Ekiert ◽  
Nils O. Lindström ◽  
...  

The overall pattern of the developing kidney is set in large part by the developing ureteric bud/collecting duct system, and dysgenesis of this system accounts for a variety of clinically significant renal diseases. Understanding how the behavior of cells in the developing ureteric bud/collecting duct is controlled is therefore important to understanding the normal and abnormal kidney. Dact proteins have recently been identified as cytoplasmic regulators of intracellular signaling. Dact1 inhibits Wnt signaling, and Dact2 inhibits transforming growth factor (TGF)-β signaling. Here, we report that Dact2 is expressed in developing and adult mouse kidneys, specifically in the ureteric bud/collecting duct epithelium, a structure whose morphogenesis is controlled partially by TGF-β. When small interfering RNA is used to knock down Dact2 expression in collecting duct cells, they show some constitutive phospho-Smad2, undetectable in controls, and elevated phospho-Smad2 in response to TGF-β. They also show defective migration and, in a monolayer wound-healing assay, they fail to assemble a leading edge “cable” of actomyosin and advance instead as a disorganized mass of lamellipodium-bearing cells. This effect is seriously exacerbated by exogenous TGF-β, although control cells tolerate it well. In three-dimensional culture, Dact2 knockdown cells form cysts and branching tubules, but the outlines of the cysts made by knockdown cells are ragged rather than smooth and the branching tubules are decorated with many fine spikes not seen in controls. These data suggest Dact2 plays a role in regulating morphogenesis by renal collecting duct cells, probably by protecting cells from overly strong TGF-β pathway activation.


1978 ◽  
Vol 26 (4) ◽  
pp. 318-321 ◽  
Author(s):  
M Schachter ◽  
B Maranda ◽  
C Moriwaki

Antibody to pure kallikrein from the coagulating gland of the guinea pig was used to localize kallikrein in the gland by immunofluorescence techniques. This antibody also reacted with the guinea pig's submandibular gland kallikrein. The specific fluorescence in the coagulating gland was present diffusely in all secretory cells lining the crypts. In contrast to its diffuse location in the coagulating gland, kallikrein in the submandibular gland was specifically located in the luminal border of striated and some larger duct cells, whereas the acinar cells and interstitial tissue showed no significant fluorescence.


Author(s):  
J. R. Ruby

Parotid glands were obtained from five adult (four male and one female) armadillos (Dasypus novemcinctus) which were perfusion-fixed. The glands were located in a position similar to that of most mammals. They extended interiorly to the anterior portion of the submandibular gland.In the light microscope, it was noted that the acini were relatively small and stained strongly positive with the periodic acid-Schiff (PAS) and alcian blue techniques, confirming the earlier results of Shackleford (1). Based on these qualities and other structural criteria, these cells have been classified as seromucous (2). The duct system was well developed. There were numerous intercalated ducts and intralobular striated ducts. The striated duct cells contained large amounts of PAS-positive substance.Thin sections revealed that the acinar cells were pyramidal in shape and contained a basally placed, slightly flattened nucleus (Fig. 1). The rough endoplasmic reticulum was also at the base of the cell.


Author(s):  
Dwight K. Romanovicz ◽  
Jacob S. Hanker

The presence of catalase-positive rods (Fig. 1) of different dimensions, which frequently have a crystalline appearance by light microscopy, has been reported. They seem to be related to peroxisomes which were characterized morphologically and cytochemically in parotid and other exocrine glands of the rat by Hand in 1973. Our light microscopic studies of these spherical microbodies and rods of different sizes, stained by virtue of the peroxidatic activity of their catalase, indicate that they are almost entirely confined to the cells of the striated and execretory ducts of the submandibular gland in the mouse. The rods were usually noted only in the proximity of the ductal microbodies. The latter frequently showed a tendency to appear in linear close array, or even to be contiguous (Fig. 2). This suggested that the rods could be formed by the fusion of microbodies.


Author(s):  
Emma Leishman ◽  
Michelle N. Murphy ◽  
Michelle I. Murphy ◽  
Ken Mackie ◽  
Heather B. Bradshaw

Sign in / Sign up

Export Citation Format

Share Document