Evidence for Less Irritation to the Peritoneal Membrane in Rats Dialyzed with Solutions Low in Glucose Degradation Products

2004 ◽  
Vol 24 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Katarzyna Wieczorowska–Tobis ◽  
Renata Brelinska ◽  
Janusz Witowski ◽  
Jutta Passlick–Deetjen ◽  
Thomas P. Schaub ◽  
...  

Background Acidic pH and the presence of glucose degradation products (GDP) are believed to compromise the biocompatibility of peritoneal dialysis fluids (PDF). The present study examines the effects of long-term exposure to GDP and low pH by comparing conventional PDF and a new, neutral pH, low GDP solution. Methods All experiments were performed using a chronic infusion model of dialysis in nonuremic rats. The animals were treated for 6 weeks with 2 daily injections of 4.25% glucose-containing PDF. The following PDF were tested: CAPD3 (single-chamber bag, low pH, high GDP), CAPD3 pH 7.4 (single-chamber bag, neutral pH, high GDP), CAPD3-Balance (double-chamber bag, neutral pH, low GDP). All test solutions were obtained from Fresenius Medical Care, Bad Homburg, Germany. Results After 6 weeks of exposure, peritoneal permeability to water, urea, creatinine, glucose, and sodium, assessed by peritoneal equilibration test, was similar in all groups. However, compared to other PDF, dialysis with CAPD3-Balance was associated with reduced concentrations of protein and hyaluronan in the dialysate, decreased peritoneal eosinophilia, and reduced dialysate levels of chemokines CCL2/MCP-1 and CCL5/RANTES. Morphologic changes in the peritoneal membrane of CAPD3-Balance-treated animals were much less pronounced and included reduced vascular density, preservation of the mesothelial monolayer and intercellular junction, and no reduplication of the submesothelial basement membrane. Conclusions A new generation of PDF with physiologic pH and low GDP level produce less irritation to the peritoneal membrane and better preserve its structural integrity. This effect seems to be related predominantly to minimized GDP concentrations.

2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 23-27 ◽  
Author(s):  
Anders Wieslander ◽  
Torbjörn Linden ◽  
Barbara Musi ◽  
Ola Carlsson ◽  
Reinhold Deppisch

Carbohydrates are not stable when exposed to energy; they degrade into new molecules. In peritoneal dialysis (PD) fluids, degradation of glucose occurs during the heat sterilization procedure. The biological consequences of this degradation are side effects such as impaired proliferation and impaired host defense mechanisms, demonstrated in vitro for a great variety of cells. Several highly toxic compounds—such as formaldehyde and 3-deoxyglucosone—have been identified in PD fluids. Carbonyl compounds, apart from being cytotoxic, are also well-known promoters of irreversible advanced glycation end-products (AGEs), which might participate in the long-term remodeling of the peritoneal membrane. Various approaches can be used to reduce the formation of glucose degradation products (GDPs) during heat sterilization. Some examples are shortening the sterilization time, lowering the pH, removing catalyzing substances, and increasing glucose concentration. The latter three factors are employed in the multi-compartment bag with a separate chamber containing pure glucose at high concentration and low pH. Gambrosol trio, a PD fluid produced in this way, shows reduced cytotoxicity, normalized host defense reactions, less AGE formation, and reduced concentrations of formaldehyde and 3-deoxyglucosone. Moreover, in the clinical situation, the fluid turns out to be more biocompatible for the patient, causing less mesothelial cell damage, which in the long term could lead to a more intact peritoneal membrane. Conclusion Glucose degradation products in heat-sterilized fluids for peritoneal dialysis are cytotoxic, promote AGE formation, and cause negative side effects for the patient. Using improved and well-controlled manufacturing processes, it is possible to produce sterile PD fluids with glucose as the osmotic agent but without the negative side effects related to GDPs.


2016 ◽  
Vol 36 (5) ◽  
pp. 569-572 ◽  
Author(s):  
Tatiana De los Ríos ◽  
Juan Pérez-Martínez ◽  
Jose Portoles ◽  
Monika Lichodziejewska-Niemierko ◽  
Maite Rivera ◽  
...  

Interference of conventional peritoneal dialysis fluids (cPDFs) with peritoneal membrane cell functions may be attributed to the dialysis fluid's low pH, high glucose concentration, and/or the presence of glucose degradation products (GDPs), the last of which leads to higher levels of advanced glycation end-products (AGEs). It has been suggested that the peritoneal membrane might be better preserved by using biocompatible solutions, including cancer antigetn 125 (CA125). This prospective, open-label, multicentre, randomized, controlled, cross-over phase IV study compared the in vivo biocompatibility of a neutral-pH, low-GDP peritoneal dialysis (PD) solution ( balance) with a cPDF in automated PD (APD) patients. Our study revealed a significantly increased appearance rate and concentration of CA125 in the peritoneal effluent of APD patients treated with the neutral-pH, low-GDP solution balance versus a conventional PD solution.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 669
Author(s):  
Ching-Po Li ◽  
Chyong-Mei Chen ◽  
Chia-Hao Chan ◽  
Szu-Yuan Li ◽  
Ming-Tsun Tsai ◽  
...  

Long-term peritoneal dialysis (PD) can lead to detrimental changes in peritoneal membrane function, which may be related to the accumulation of glucose degradation products. A previous study demonstrated that 6 months of far-infrared (FIR) therapy may decrease glucose degradation products in PD dialysate. Due to limited literature on this matter, this study aims to investigate the effect of FIR therapy on the peritoneal membrane transport characteristics of PD patients. Patients were grouped according to baseline peritoneal transport status: lower transporters (low and low-average) and higher transporters (high-average and high). Both groups underwent 40 min of FIR therapy twice daily for 1 year. In lower transporters, FIR therapy increased weekly dialysate creatinine clearance (6.91 L/wk/1.73 m2; p = 0.04) and D/P creatinine (0.05; p = 0.01). In higher transporters, FIR therapy decreased D/P creatinine (−0.05; p = 0.01) and increased D/D0 glucose (0.05; p = 0.006). Fifty percent of high transporter patients shifted to high-average status after FIR therapy. FIR therapy may decrease D/P creatinine for patients in the higher transporter group and cause high transporters to shift to high-average status, which suggests the potential of FIR therapy in improving peritoneal membrane function in PD patients.


2013 ◽  
Vol 84 (5) ◽  
pp. 969-979 ◽  
Author(s):  
Yeoungjee Cho ◽  
David W. Johnson ◽  
Sunil V. Badve ◽  
Jonathan C. Craig ◽  
Giovanni F.M. Strippoli ◽  
...  

2001 ◽  
Vol 21 (3_suppl) ◽  
pp. 119-124 ◽  
Author(s):  
Anders Wieslander ◽  
Torbjörn Linden ◽  
Per Kjellstrand

♦ Objectives A patient on peritoneal dialysis (PD) uses 3 – 7 tons of PD fluid every year. The result is considerable stress on the peritoneal tissue. Aspects of PD fluids that have been considered responsible for bioincompatibility are low pH, high osmolality, high glucose and lactate concentrations, and the presence of glucose degradation products (GDPs). However, the relative importance of each factor in PD fluid has so far not been investigated. Discovering their relative importance was the aim of the present study. ♦ Methods Two main methods for investigating biocompatibility were used in this study: cytotoxicity measured as in vitro inhibition of cell growth, and in vitro AGE formation measured as albumin-linked fluorescence. ♦ Results The two most important factors for determining in vitro bioincompatibility of PD fluids were the presence of GDPs, which caused both severe cytotoxicity and strong AGE promotion, and low pH, which induced severe cytotoxicity. ♦ Conclusions The biocompatibility of PD fluids can be monitored through fairly simple in vitro methods such as cell proliferation and AGE formation. Bioincompatibility of PD fluids is caused mainly by the presence of GDPs and low pH. These findings correlate well with known clinical bioincompatibility.


Sign in / Sign up

Export Citation Format

Share Document