scholarly journals The Effect of Far-Infrared Therapy on the Peritoneal Membrane Transport Characteristics of Uremic Patients Undergoing Peritoneal Dialysis: An Open-Prospective Proof-of-Concept Study

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 669
Author(s):  
Ching-Po Li ◽  
Chyong-Mei Chen ◽  
Chia-Hao Chan ◽  
Szu-Yuan Li ◽  
Ming-Tsun Tsai ◽  
...  

Long-term peritoneal dialysis (PD) can lead to detrimental changes in peritoneal membrane function, which may be related to the accumulation of glucose degradation products. A previous study demonstrated that 6 months of far-infrared (FIR) therapy may decrease glucose degradation products in PD dialysate. Due to limited literature on this matter, this study aims to investigate the effect of FIR therapy on the peritoneal membrane transport characteristics of PD patients. Patients were grouped according to baseline peritoneal transport status: lower transporters (low and low-average) and higher transporters (high-average and high). Both groups underwent 40 min of FIR therapy twice daily for 1 year. In lower transporters, FIR therapy increased weekly dialysate creatinine clearance (6.91 L/wk/1.73 m2; p = 0.04) and D/P creatinine (0.05; p = 0.01). In higher transporters, FIR therapy decreased D/P creatinine (−0.05; p = 0.01) and increased D/D0 glucose (0.05; p = 0.006). Fifty percent of high transporter patients shifted to high-average status after FIR therapy. FIR therapy may decrease D/P creatinine for patients in the higher transporter group and cause high transporters to shift to high-average status, which suggests the potential of FIR therapy in improving peritoneal membrane function in PD patients.

2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 23-27 ◽  
Author(s):  
Anders Wieslander ◽  
Torbjörn Linden ◽  
Barbara Musi ◽  
Ola Carlsson ◽  
Reinhold Deppisch

Carbohydrates are not stable when exposed to energy; they degrade into new molecules. In peritoneal dialysis (PD) fluids, degradation of glucose occurs during the heat sterilization procedure. The biological consequences of this degradation are side effects such as impaired proliferation and impaired host defense mechanisms, demonstrated in vitro for a great variety of cells. Several highly toxic compounds—such as formaldehyde and 3-deoxyglucosone—have been identified in PD fluids. Carbonyl compounds, apart from being cytotoxic, are also well-known promoters of irreversible advanced glycation end-products (AGEs), which might participate in the long-term remodeling of the peritoneal membrane. Various approaches can be used to reduce the formation of glucose degradation products (GDPs) during heat sterilization. Some examples are shortening the sterilization time, lowering the pH, removing catalyzing substances, and increasing glucose concentration. The latter three factors are employed in the multi-compartment bag with a separate chamber containing pure glucose at high concentration and low pH. Gambrosol trio, a PD fluid produced in this way, shows reduced cytotoxicity, normalized host defense reactions, less AGE formation, and reduced concentrations of formaldehyde and 3-deoxyglucosone. Moreover, in the clinical situation, the fluid turns out to be more biocompatible for the patient, causing less mesothelial cell damage, which in the long term could lead to a more intact peritoneal membrane. Conclusion Glucose degradation products in heat-sterilized fluids for peritoneal dialysis are cytotoxic, promote AGE formation, and cause negative side effects for the patient. Using improved and well-controlled manufacturing processes, it is possible to produce sterile PD fluids with glucose as the osmotic agent but without the negative side effects related to GDPs.


2004 ◽  
Vol 24 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Sun-Hee Park ◽  
Eun-Gyui Lee ◽  
In-San Kim ◽  
Yong-Jin Kim ◽  
Dong-Kyu Cho ◽  
...  

Background Long-term use of the peritoneal membrane as a dialyzing membrane is hampered by its eventual deterioration. One of the contributing factors is glucose degradation products (GDPs) in the dialysis solution. In this study, we evaluated the effect of a low GDP solution on peritoneal permeability, the structural stability of the peritoneal membrane, and vascular endothelial growth factor (VEGF) production in a chronic inflammatory infusion model of peritoneal dialysis (PD) in the rat. Methods Male Sprague–Dawley rats were divided into 3 groups: a conventional solution group (group C, n = 12), a test solution group (group T, n = 12), and a normal control group (group NC, n = 8). Group T rats were infused with low GDP solution (2.3% glucose solution with two compartments), and group C rats with conventional dialysis solution (2.3% glucose solution), adjusted to pH 7.0 before each exchange. Animals were infused through a permanent catheter with 25 mL of dialysis solution. In both groups, peritoneal inflammation was induced by infusing dialysis solution supplemented with lipopolysaccharide on days 8, 9, and 10 after starting dialysate infusion. Peritoneal membrane function was assessed before and 6 weeks after initiating dialysis using the 1-hour peritoneal equilibration test (PET) employing 4.25% glucose solution. Both VEGF and transforming growth factor β1 (TGFβ1) in the dialysate effluent were measured by ELISA. The number of vessels in the omentum was counted after staining with anti-von Willebrand factor, and the thickness of submesothelial matrix of the trichrome-stained parietal peritoneum was measured. Peritoneal tissue was analyzed for VEGF protein using immunohistochemistry. Results At the end of 6 weeks, the rate of glucose transport (D/D0, where D is glucose concentration in the dialysate and D0 is glucose concentration in the dialysis solution before it is infused into the peritoneal cavity) was higher in group T ( p < 0.05) than in group C. Dialysate-to-plasma ratio (D/P) of protein was lower in group T ( p < 0.05) than in group C; D/Purea, D/Psodium, and drain volumes did not differ significantly between groups C and T. Dialysate VEGF and TGFβ levels were lower in group T ( p < 0.05) than in group C. Immunohistochemical studies also revealed less VEGF in the peritoneal membranes of group T. There were significantly more peritoneal blood vessels in group C ( p < 0.05) than in group T, but the thickness of submesothelial matrix of the parietal peritoneum was not different between the two groups. The VEGF levels in the dialysate effluent correlated positively with the number of blood vessels per field ( r = 0.622, p < 0.005). Conclusion Using a chronic inflammatory infusion model of PD in the rat, we show that dialysis with GDP-containing PD fluid is associated with increased VEGF production and peritoneal vascularization. Use of low GDP solutions may therefore be beneficial in maintaining the function and structure of the peritoneal membrane during long-term PD.


2001 ◽  
Vol 21 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Simon J. Davies

Objective Peritoneal membrane function influences dialysis prescription and clinical outcome and may change with time on treatment. Increasingly sophisticated tools, ranging from the peritoneal equilibration test (PET) to the standard permeability analysis (SPA) and personal dialysis capacity (PDC) test, are available to the clinician and clinical researcher. These tests allow assessment of a number of aspects of membrane function, including solute transport rates, ultrafiltration capacity, effective reabsorption, transcellular water transport, and permeability to macromolecules. In considering which tests are of greatest value in monitoring long-term membrane function, two criteria were set: those that result in clinically relevant interpatient differences in achieved ultrafiltration or solute clearances, and those that change with time in treatment. Study Selection Clinical validation studies of the PET, SPA, and PDC tests. Studies reporting membrane function using these methods in either long-term (5 years) peritoneal dialysis patients or longitudinal observations (> 2 years). Data Extraction Directly from published data. Additional, previously unpublished analysis of data from the Stoke PD Study. Results Solute transport is the most important parameter. In addition to predicting patient and technique survival at baseline, there is strong evidence that it can increase with time on treatment. Whereas patients with initially high solute transport drop out early from treatment, those with low transport remain longer on treatment, although, over 5 years, a proportion develop increasing transport rates. Ultrafiltration capacity, while being a composite measure of membrane function, is a useful guide for the clinician. Using the PET (2.27% glucose), a net ultrafiltration capacity of < 200 mL is associated with a 50% chance of achieving less than 1 L daily ultrafiltration at the expense of 1.8 hypertonic (3.86%) exchanges in anuric patients. Using a SPA (3.86% glucose), a net ultrafiltration capacity of < 400 mL indicates ultrafiltration failure. While there is circumstantial evidence that, with time on peritoneal dialysis, loss of transcellular water transport might contribute to ultrafiltration failure, none of the current tests is able to demonstrate this unequivocally. Of the other membrane parameters, evidence that interpatient differences are clinically relevant (permeability to macro-molecules), or that they change significantly with time on treatment (effective reabsorption), is lacking. Conclusion A strong case can be made for the regular assessment by clinicians of solute transport and ultrafiltration capacity, a task made simple to achieve using any of the three tools available.


2001 ◽  
Vol 21 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Janusz Witowski ◽  
Thorsten O. Bender ◽  
Gerhard M. Gahl ◽  
Ulrich Frei ◽  
Achim Jörres

Background The bioincompatibility of peritoneal dialysis fluids (PDF) in current use has been partially attributed to the presence of glucose degradation products (GDPs), which are generated during heat sterilization of PDF. Several of the GDPs have been identified and we have recently demonstrated that these GDPs per se may impair the viability and function of human peritoneal mesothelial cells (HPMC) in vitro. It is also possible that GDP-related toxicity is further exacerbated by the milieu of PDF. We review the current literature on GDP and present the results of experiments comparing the impact of heat- and filter-sterilized PDF on the viability and function of HPMC. Methods Peritoneal dialysis fluids with low (1.5%) and high (4.25%) glucose concentrations were laboratory prepared according to the standard formula and sterilized either by heat (H-PDF; 121°C, 0.2 MPa, 20 minutes) or filtration (F-PDF; 0.2 μ). The buildup of GDP was confirmed by UV absorbance at 284 nm. Confluent HPMC monolayers were exposed to these solutions mixed 1:1 with standard M199 culture medium. After 24 hours, cell viability was assessed with the MTT assay, and interleukin-1β–stimulated monocyte chemotactic protein-1 (MCP-1) release with specific immunoassay. Results Exposure of HPMC to H-PDF resulted in a significant decrease in cell viability, with solutions containing 4.25% glucose being more toxic than 1.5% glucose-based PDF (27.4% ± 3.4% and 53.4% ± 11.0% of control values, respectively). In contrast, viability of HPMC exposed to F-PDF was not different from that of control cells. Moreover, treatment with H-PDF impaired the release of MCP-1 from HPMC to a significantly greater degree compared to F-PDF (17.4% and 24.9% difference for low and high glucose PDF, respectively). Conclusions Exposure of HPMC to H-PDF significantly impairs cell viability and the capacity for generating MCP-1 compared to F-PDF. This effect is likely to be mediated by GDPs present in H-PDF but not in F-PDF.


1989 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Min Sun Park ◽  
Jean Lee ◽  
Moon Sung Lee ◽  
Seung Ho Baick ◽  
Seung Duk Hwang ◽  
...  

In order to evaluate peritoneal membrane function and responsiveness of peritoneal microcirculation to vasoactive agents in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, we studied peritoneal clearances of urea (Curea) and creatinine (Ccr), protein concentrations in drained dialysate (D PC), peritoneal glucose absorption (% GA), and drained dialysate volume ( VD) before and after nitroprusside (NP) addition to dialysis solution in 17 long-term CAPD patients (mean duration of CAPD: 52 months) and the results were compared to those of 18 patients who were just trained for CAPD (mean duration: 0.6 month). There were no differences in the control (without NP) Curea, Ccr, D PC, %GA, and VD between the new and long-term CAPD patients. Curea, Ccr, and D PC increased significantly with NP in both new and long-term patients. Curea and Ccr with NP were not different between the new and long-term patients but D PC with NP was significantly lower in the long-term CAPD patients. The results of this study suggest that peritoneal solute clearances and the responsiveness of peritoneal microcirculation to NP remain unchanged after four years of CAPD, despite recurrent episodes of peritonitis.


2001 ◽  
Vol 12 (11) ◽  
pp. 2434-2441 ◽  
Author(s):  
JANUSZ WITOWSKI ◽  
JUSTYNA WISNIEWSKA ◽  
KATARZYNA KORYBALSKA ◽  
THORSTEN O. BENDER ◽  
ANDRZEJ BREBOROWICZ ◽  
...  

Abstract. Bioincompatibility of peritoneal dialysis fluids (PDF) has been linked to the presence of glucose degradation products (GDP). Previous experiments have shown that short-term exposure to several GDP at concentrations found in commercially available PDF had no significant effect on human peritoneal mesothelial cells (HPMC). During continuous ambulatory peritoneal dialysis, however, cells are continually exposed to GDP for extended periods of time. Thus, the impact of GDP on HPMC during long-term exposure was assessed. HPMC were cultured for up to 36 d in the presence of 6 identified GDP (acetaldehyde, formaldehyde, furaldehyde, glyoxal, methylglyoxal, and 5-HMF) at doses that reflect their concentrations in conventional PDF. At regular time intervals, the ability of HPMC to secrete cytokines (interleukin-6 [IL-6]) and extracellular matrix molecules (fibronectin) was evaluated. In addition, cell viability, morphology, and proliferative potential were assessed. Exposure to GDP resulted in a significant reduction in mesothelial IL-6 and fibronectin release. Approximately 80% of this decrease occurred during the first 12 d of the exposure and was paralleled by a gradual loss of cell viability and development of morphologic alterations. After 36 d of exposure, the number of cells in GDP-treated cultures was reduced by nearly 60%. However, GDP-treated cells were able to resume normal proliferation when transferred to a normal GDP-free medium. HPMC viability and function may be impaired during long-term exposure to clinically relevant concentrations of GDP, which suggests a potential role of GDP in the pathogenesis of peritoneal membrane dysfunction during chronic peritoneal dialysis.


2021 ◽  
Author(s):  
Krystell Oviedo Flores ◽  
Lukas Kaltenegger ◽  
Fabian Eibensteiner ◽  
Markus Unterwurzacher ◽  
Klaus Kratochwill ◽  
...  

Abstract New guidelines on evaluation of peritoneal membrane function recommend ruling out catheter dysfunction when evaluating patients with low ultrafiltration capacity. We introduce the use of a combination of parameters obtained from daily measurements of the cycler software for predicting catheter dysfunction in automated peritoneal dialysis patients. Out of 117 patients treated between 2015 and 2021, all patients with verified catheter dysfunction (n=14) were identified and compared to controls (n=19). We retrieved cycler data for seven days each and tested parameters predictive capability of catheter dysfunction. Total number of alarms/week >7 as single predictive parameter of catheter dislocation identified 85.7% (sensitivity) of patients with dislocated catheter and 31.6% (1-specificity) of control patients. A combination of parameters (number of alarms/week >7, drain time >22 min, ultrafiltration of last fill <150 mL) where at least two of three parameters appeared identified the same proportion of patients with catheter dislocation, but was more accurate in identifying controls (21% false positive). An easily applicable combination of daily cycler readout parameters, also available in remote monitoring platforms can be used as predictor of inadequate catheter function during routine follow-up with potential for earlier diagnosis of this frequent complication in the future.


1989 ◽  
Vol 12 (11) ◽  
pp. 711-714 ◽  
Author(s):  
N.M. Dedhia ◽  
L.M. Schmidt ◽  
Z.J. Twardowski ◽  
R. Khanna ◽  
K.D. Nolph

A patient on continuous ambulatory peritoneal dialysis using an “O” set connection system with sodium hypochlorite as a disinfectant incidentally infused the disinfectant intraperitoneally on two occasions. The product of peritoneal membrane permeability and peritoneal membrane surface area increased after both infusions as judged by peritoneal equilibration test results and/or serum chemistries. Elevated peritoneal solute transport rates and reduced ultrafiltration gradually subsided but did not return to preinfusion values. This observation suggests that intraperitoneal sodium hypochlorite infusion may cause significant long-term alteration in peritoneal membrane transport characteristics.


2000 ◽  
Vol 20 (2_suppl) ◽  
pp. 37-41 ◽  
Author(s):  
Clifford J. Holmes ◽  
Ty R. Shockley

Glucose has been used successfully for more than two decades in peritoneal dialysis, and in this regard, must be considered a safe and effective osmotic agent. Recently, however, insight has been growing about the potential for metabolic and peritoneal effects arising from long-term exposure to high glucose concentrations—for example, hyperlipidemia and loss of peritoneal ultrafiltration. Clinical concerns over exposure to excessive glucose and glucose degradation products (GDPs) during peritoneal dialysis can be significantly ameliorated by the use of non-glucose-based peritoneal dialysis (PD) solutions, in combination with more biocompatible glucose-based formulations. Peritoneal exposure to GDPs can be reduced by using low-GDP-containing glucose formulations and non glucose solutions such as amino acids and icodextrin. Peritoneal glucose exposure, hyperosmolar stress, and carbohydrate absorption can be reduced by using a combination of icodextrin and amino acids.


Sign in / Sign up

Export Citation Format

Share Document