The synergism between melamine and expandable graphite on improving the flame retardancy of polyamide 11

2016 ◽  
Vol 29 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Xiaodong Jin ◽  
Chen Chen ◽  
Jun Sun ◽  
Xing Zhang ◽  
Xiaoyu Gu ◽  
...  

Expandable graphite (EG) has attracted more and more attention in fire science society due to its excellent char-forming ability, however, it cannot meet commercial flame-retardant requirements because of the low intensity of the char. This work reported our very recent efforts on improving the char quality of EG by introducing melamine (MEL) in order to enhance the fire resistance and thermal stability of polyamide 11 (PA 11) composite. The flammability characterized by limiting oxygen index, UL-94 vertical burning, and cone calorimeter (cone) tests shows that the presence of both EG and MEL can significantly improve the flame retardancy and thermal stability of PA 11 composites. The scanning electron microscopic analysis shows that EG and MEL are beneficial to form compact char layers that can isolate the matrix from heat and oxygen. It is proposed that the formation of hydrogen bonds between MEL and PA 11 are crucial for improving the flame retardancy of the composites.

2012 ◽  
Vol 24 (8) ◽  
pp. 738-746 ◽  
Author(s):  
Rui Zhang ◽  
Xifu Xiao ◽  
Qilong Tai ◽  
Hua Huang ◽  
Jian Yang ◽  
...  

Lignin–silica hybrids (LSHs) were prepared by sol–gel method and characterized by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). LSH and ammonium polyphosphate (APP) were added into poly(lactic acid) (PLA) as a novel intumescent flame-retardant (IFR) system to improve the flame retardancy of PLA. The flame-retardant effect of APP and LSH in PLA was studied using limiting oxygen index (LOI), vertical burning (UL-94) tests and cone calorimeter. The thermal stability of PLA/APP/LSH composites was evaluated by thermogravimetric analysis (TGA). Additionally, the morphology and components of char residues of the IFR-PLA composites were investigated by SEM and XPS. With the addition of APP/LSH to PLA system, the morphology of the char residue has obviously changed. Compared with PLA/APP and PLA/APP/lignin, a continuous and dense intumescent charring layer with more phosphor in PLA composites is formed, which exhibits better flame retardancy. All the results show that the combination of APP and LSH can improve the flame-retardant property and increase the thermal stability of PLA composites greatly.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zahra Dashtizadeh ◽  
K. Abdan ◽  
M. Jawaid ◽  
Masoud Dashtizadeh

In this paper, hybrid composites were fabricated by using kenaf and recycled carbon with a cashew nut shell liquid (CNSL) derivative known as cardanol as the matrix by a compression molding technique. In this work, we look for the effect of recycled carbon weight loading (15%, 25%, and 35%) on the thermal properties of kenaf/cardanol composites while maintaining the total fiber loading of 50 wt%. TGA, DSC, DMA, and flammability UL 90 HB properties of the specimens were studied. The results indicate that cardanol improved the thermal stability of kenaf and hybridization with recycled carbon also further improved the thermal stability of the specimens. The flammability UL 90 HB test determines the flame retardancy property of all specimens.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1217-1225 ◽  
Author(s):  
Jialiang Li ◽  
Hongyu Wang ◽  
Shichao Li

Phosphoric triamide (PTA) and glycidyl polyhedral oligomeric silsesquioxane (POSS) were simultaneously incorporated into the cured network of a bisphenol F epoxy resin and 4,4′-diaminodiphenyl methane (DDM) to improve the thermal stability and flame retardancy. PTA was synthesized by triethyl phosphate and DDM, and its chemical structure was confirmed by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR). The differential scanning calorimetric (DSC) results showed that the introduction of PTA and POSS slightly increased the glass transition temperature of the epoxy resin. The thermogravimetric analysis results indicated that compared with the pure, phosphoric, and silicic epoxy resins, the modified epoxy resin possessed the lowest weight loss rate and highest char residue. Its limiting oxygen index value was as high as 30.5, and the UL-94 grade reached V-1. A decomposition test was carried out to obtain sufficient char residue and investigate the condensed mechanism. The scanning electron microscopic images demonstrated that the char residue of the modified epoxy resin had a compact structure. The energy dispersive X-ray and FTIR analyses verified the synergistic effect of the phosphorus and silicon in the PTA and POSS, respectively, on the epoxy resin.


2013 ◽  
Vol 469 ◽  
pp. 171-174 ◽  
Author(s):  
Ning Zhang ◽  
Si Yao Sui ◽  
Zhe Wang ◽  
Zhong Su Ma

Edible films were prepared using soy protein isolate (4g/100g), oleic acid (0-2g/100g) and stearic acid (0-2g/100g). Effects of the type and ratio of fatty acids (oleic acid and stearic acid) on the thermal properties of soybean protein isolate-based films were investigated. The results indicated that the addition of oleic acid and stearic acid take a significant effect on the thermal stability of soybean protein isolate-based films, as may attribute to that oleic acid is an amphiphilic substance that interacts with both polar and hydrophobic sites on proteins, thus it could improve the functional properties of the films. Besides, the solid state and hydrophobic nature of stearic acid could help limit water diffusion in the matrix more efficiently when it is well-integrated in the matrix through the surfactant action of oleic acid.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Xiao Wu ◽  
Ganglan Jiang ◽  
Yan Zhang ◽  
Lin Wu ◽  
Yanjiang Jia ◽  
...  

Enhancement of flame retardancy of a colorless and transparent semi-alicyclic polyimide (PI) film was carried out by the incorporation of phosphazene (PPZ) flame retardant (FR). For this purpose, PI-1 matrix was first synthesized from hydrogenated 3,3′,4,4′-biphenyltetracarboxylic dianhydride (HBPDA) and 4,4′-oxydianiline (ODA). The soluble PI-1 resin was dissolved in N,N-dimethylacetamide (DMAc) to afford the PI-1 solution, which was then physically blended with PPZ FR with the loading amounts in the range of 0–25 wt.%. The PPZ FR exhibited good miscibility with the PI-1 matrix when its proportion was lower than 10 wt.% in the composite films. PI-3 composite film with the PPZ loading of 10 wt.% showed an optical transmittance of 75% at the wavelength of 450 nm with a thickness of 50 μm. More importantly, PI-3 exhibited a flame retardancy class of UL 94 VTM-0 and reduced total heat release (THR), heat release rate (HRR), smoke production rate (SPR), and rate of smoke release (RSR) values during combustion compared with the original PI-1 film. In addition, PI-3 film had a limiting oxygen index (LOI) of 30.9%, which is much higher than that of PI-1 matrix (LOI: 20.1%). Finally, incorporation of PPZ FR decreased the thermal stability of the PI films. The 10% weight loss temperature (T10%) and the glass transition temperature (Tg) of the PI-3 film were 411.6 °C and 227.4 °C, respectively, which were lower than those of the PI-1 matrix (T10%: 487.3 °C; Tg: 260.6 °C)


Cellulose ◽  
2020 ◽  
Vol 27 (17) ◽  
pp. 10473-10487
Author(s):  
Zheng Zhang ◽  
Dezheng Kong ◽  
Heng Sun ◽  
Ling Sun ◽  
Chaohong Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document