Sol–gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimisation of the process and evaluation of the durability

Cellulose ◽  
2010 ◽  
Vol 18 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Jenny Alongi ◽  
Mihaela Ciobanu ◽  
Giulio Malucelli
Cellulose ◽  
2020 ◽  
Vol 27 (17) ◽  
pp. 10473-10487
Author(s):  
Zheng Zhang ◽  
Dezheng Kong ◽  
Heng Sun ◽  
Ling Sun ◽  
Chaohong Dong ◽  
...  

2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060018
Author(s):  
E. M. Bayan ◽  
T. G. Lupeiko ◽  
L. E. Pustovaya ◽  
M. G. Volkova

Sn-doped TiO2 nanomaterials were synthesized by sol–gel method. It was shown the phase compositions and phase transitions change with the introduction of different tin amounts (0.5–20[Formula: see text]mol.%). X-ray powder diffraction was used to study the effect of different tin amounts on the anatase–rutile phase transition. It was found that the introduction of ions increases the thermal stability of anatase modifications. The material’s photocatalytic activity was studied in reaction with a model pollutant (methylene blue) photodegradation under UV and visible light activation. The best photocatalytic properties were shown for material, which contains 5[Formula: see text]mol.% of Sn.


2009 ◽  
Vol 480 (2) ◽  
pp. 908-911 ◽  
Author(s):  
E. Kin ◽  
T. Fukuda ◽  
S. Yamauchi ◽  
Z. Honda ◽  
H. Ohara ◽  
...  

2021 ◽  
pp. 111825
Author(s):  
Panpan Du ◽  
Qi Zhu ◽  
Xiaodong Li ◽  
Xudong Sun ◽  
Byung-Nam Kim ◽  
...  

2020 ◽  
Vol 5 (3) ◽  
pp. 962-967 ◽  
Author(s):  
Reza Behnam ◽  
Hossein Roghani‐Mamaqani ◽  
Mehdi Salami‐Kalajahi ◽  
Hanieh Mardani

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 380 ◽  
Author(s):  
Wei Zhao ◽  
Yongxiang Li ◽  
Qiushi Li ◽  
Yiliang Wang ◽  
Gong Wang

The flame retardant modification of epoxy (EP) is of great signification for aerospace, automotive, marine, and energy industries. In this study, a series of EP composites containing different variations of phosphorus-containing polysulfone (with a phosphorus content of approximately 1.25 wt %) were obtained. The obtained EP/polysulfone composites had a high glass transition temperature (Tg) and high flame retardancy. The influence of phosphorus-containing compounds (ArPN2, ArPO2, ArOPN2 and ArOPO2) on the thermal properties and flame retardancy of EP/polysulfone composites was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), a UL-94 vertical burning test, and cone calorimeter tests. The phosphorus-containing polysulfone enhanced the thermal stability of EP. The more stable porous char layer, less flammable gases, and a lower apparent activation energy at a high degree of conversion demonstrated the high gas inhibition effect of phosphorus-containing compounds. Moreover, the gas inhibition effect of polysulfone with a P–C bond was more efficient than the polysulfone with a P–O–C bond. The potential for optimizing flame retardancy while maintaining a high Tg is highlighted in this study. The flame-retardant EP/polysulfone composites with high thermal stability broaden the application field of epoxy.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1062 ◽  
Author(s):  
Junlei Chen ◽  
Jihui Wang ◽  
Aiqing Ni ◽  
Hongda Chen ◽  
Penglong Shen

In this work, a novel phosphorous–nitrogen based charring agent named poly(1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (PDTBP) was synthesized and used to improve the flame retardancy of high-density polyethylene (HDPE) together with ammonium polyphosphate (APP). The results of Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance (NMR) showed that PDTBP was successfully synthesized. Compared with the traditional intumescent flame retardant (IFR) system contained APP and pentaerythritol (PER), the novel IFR system (APP/PDTBP, weight ratio of 2:1) could significantly promote the flame retardancy, water resistance, and thermal stability of HDPE. The HDPE/APP/PDTBP composites (PE3) could achieve a UL-94 V-0 rating with LOI value of 30.8%, and had a lower migration percentage (2.2%). However, the HDPE/APP/PER composites (PE5) had the highest migration percentage (4.7%), lower LOI value of 23.9%, and could only achieve a UL-94 V-1 rating. Besides, the peak of heat release rate (PHRR), total heat release (THR), and fire hazard value of PE3 were markedly decreased compared to PE5. PE3 had higher tensile strength and flexural strength of 16.27 ± 0.42 MPa and 32.03 ± 0.59 MPa, respectively. Furthermore, the possible flame-retardant mechanism of the APP/PDTBP IFR system indicated that compact and continuous intumescent char layer would be formed during burning, thus inhibiting the degradation of substrate material and improving the thermal stability of HDPE.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 228 ◽  
Author(s):  
Ekaterina S. Dolinina ◽  
Elizaveta Yu. Akimsheva ◽  
Elena V. Parfenyuk

Powerful antioxidant α-lipoic acid (LA) is easily degraded under light and heating. This creates difficulties in its manufacture, storage and reduces efficiency and safety of the drug. The purpose of this work was to synthesize novel silica-based composites of LA and evaluate their ability to increase photo and thermal stability of the drug. It was assumed that the drug stabilization can be achieved due to LA-silica interactions. Therefore, the composites of LA with unmodified and organomodified silica matrixes were synthesized by sol-gel method at the synthesis pH below or above the pKa of the drug. The effects of silica matrix modification and the synthesis pH on the LA-silica interactions and kinetics of photo and thermal degradation of LA in the composites were studied. The nature of the interactions was revealed by FTIR spectroscopy. It was found that the rate of thermal degradation of the drug in the composites was significantly lower compared to free LA and mainly determined by the LA-silica interactions. However, photodegradation of LA in the composites under UV irradiation was either close to that for free drug or significantly more rapid. It was shown that kinetics of photodegradation was independent of the interactions and likely determined by physical properties of surface of the composite particles (porosity and reflectivity). The most promising composites for further development of novel silica-based formulations were identified.


Sign in / Sign up

Export Citation Format

Share Document