Novel Polyimide-block-poly(dimethyl siloxane) copolymers: Effect of time on the synthesis and thermal properties

2021 ◽  
pp. 095400832110404
Author(s):  
Shengdong Xiao ◽  
Jude O Iroh

Polyimide-block-poly(dimethyl siloxane) copolymer was synthesized by a two-step process, initiated by coupling anhydride terminated poly(amic acid), AT-PAA with amino terminated poly(dimethyl siloxane), (NH2)2-PDMS to form poly(amic acid)-block-poly(dimethyl siloxane). The resulting copolymer is then thermally treated to produce polyimide-block-poly(dimethyl siloxane), PI-PDMS. Because of the high glass transition temperature, Tg of polyimide, it is usually cured at a high temperature of about 300°C for over 2.5 h. Copolymerization of polyimide with polysiloxane, reduces the imidization temperature while maintaining high thermomechanical properties. A series of instruments were used to monitor the progress of copolymerization. The time-based analysis of the product of copolymerization enables the optimization of the structure and properties of the copolymers. The chemical structure and composition of the copolymer were studied by Fourier Transform Infrared Spectroscopy, (FT-IR). The incorporation of PDMS blocks into the copolymer and the degree of imidization of the polyimide block increased with increasing reaction time. The change in the viscosity of the copolymerizing solution was monitored by simple shear viscometry conducted with the Brookfield Viscometer. The reported increase in solution viscosity with increasing copolymerization time is associated with increasing molecular weight of the copolymer. The intrinsic viscosity of the copolymer solution was measured as a function of copolymerization time and it was found that the intrinsic viscosity of the copolymer solution increased with increasing reaction time. The glass transition temperature (Tg) and the thermal stability of the copolymer were determined by differential scanning calorimetry, DSC and thermogravimetric analysis, and TGA, respectively. Between 25°C and 420°C, the copolymers synthesized in this study show two glass transition temperatures due to the polyimide, PI block at around 380°C and another peak associated with PDMS plasticized polyimide at about 290–300°C. The two Tg peaks observed in the DSC thermogram are believed to be indicative of the structure of a block copolymer. TGA analysis shows that the thermoxidative stability of the copolymers increased with increasing reaction time, due to the incorporation of increased amount of PDMS unit into the copolymer. The combination of increasing molecular weight of copolymer, higher degree of imidization of polyimide blocks and enhanced thermoxidative stability may translate into improved flame retardancy of copolymers. This suggested enhancement in flame retardancy in air atmosphere, is believed to be due the incorporated PDMS blocks, which can be converted into silica, SiO2, a recognized thermally stable material.

1998 ◽  
Vol 10 (3) ◽  
pp. 273-283 ◽  
Author(s):  
J W Connell ◽  
J G Smith ◽  
P M Hergenrother

As part of a programme to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g mol−1 and contained 15–20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (∼313 °C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fibre prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 °C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aminophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.


2020 ◽  
Vol 869 ◽  
pp. 190-195
Author(s):  
Yuri Mikhailov ◽  
Ludmila Romanova ◽  
Anna Darovskikh ◽  
Nilson Garifullin

Some properties (enthalpy of formation, glass transition temperature and rheological parameters) of hyperbranched polyglycidol derivatives containing nitrate and azide functional groups were investigated. The dependence of the found properties on the molecular weight, composition and structure of the investigated substances was determined.


2011 ◽  
Vol 83 (2) ◽  
pp. 934-939 ◽  
Author(s):  
Kiyoshi Kawai ◽  
Ken Fukami ◽  
Pariya Thanatuksorn ◽  
Chotika Viriyarattanasak ◽  
Kazuhito Kajiwara

Sign in / Sign up

Export Citation Format

Share Document