The effect of cutting fluids applied in metal cutting process

Author(s):  
Pei Yan ◽  
Yiming Rong ◽  
Gang Wang
Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Shafahat Ali ◽  
Said Abdallah ◽  
Salman Pervaiz

The cutting tool heats up during the cutting of high-performance super alloys and it negatively affects the life of the cutting tool. Improved tool life can enhance both the machinability and sustainability of the cutting process. To improve the tool life preferably cutting fluids are utilized. However, the majority of cutting fluids are non-biodegradable in nature and pose harmful threats to the environment. It has been established in the metal cutting literature that introducing microgrooves at the cutting tool rake face can significantly reduce the coefficient of friction (COF). Reduction in the COF promotes anti-adhesive behavior that improves the tool life. The current study numerically investigates the orthogonal cutting process of AISI 630 Stainless Steel using different micro grooved cutting tools. Results of the numerical simulations point to the positive influence of micro grooves on tool life. The results of the main effects found that the cutting temperature was decreased by approximately 10% and 7% with rectangular and triangular micro grooved tools, respectively. Over machining performance indicated that rectangular micro groove tools provided comparatively better performance.


Wear ◽  
2014 ◽  
Vol 311 (1-2) ◽  
pp. 21-30 ◽  
Author(s):  
Johannes Kümmel ◽  
Jens Gibmeier ◽  
Erich Müller ◽  
Reinhard Schneider ◽  
Volker Schulze ◽  
...  

2014 ◽  
Author(s):  
Jerald E. Jones ◽  
Valerie L. Rhoades ◽  
Mark D. Mann ◽  
Todd Holverson

A new cutting process, a hybrid system, uses induction heating to heat the metal ahead of the plasma cutting torch. The process has demonstrated the ability to plasma cut steel parts at speeds of up to 4X the speed of the plasma torch without the induction heating. Although the total heat input per unit time is greater, because of the increase in speed, the heat which is conducted into the cut pieces is less. This causes less potential metallurgical damage, less potential distortion, and reduced coating damage and reduced emissions during cutting, in comparison to the plasma cutting process without the induction heating. The initial development was primarily for use in cutting nuclear submarine and aircraft carrier hulls, for scrapping after decommissioning. The process has been demonstrated cutting steel plates and can be used in ship production as well. The primary motivation of the SBIR project was to reduce the heating of the cut pieces, in order to reduce the particulate matter (PM) emissions which occur when coated ship hull material is cut. An induction coil is positioned in front of the plasma cutting torch, to bring the material to an elevated temperature of at least 1600° F, before the plasma is applied to the metal surface. Induction heating testing has shown that the 35 kW induction system can maintain the 1600° F surface temperature at travel speeds of above 220 inches per minute on steel as thick as 3 inches. Once the steel is at that temperature an air plasma torch can cut the metal much faster than cutting cold steel.


2011 ◽  
Vol 317-319 ◽  
pp. 556-559
Author(s):  
Yue Zhang ◽  
Tong Jiang ◽  
Li Han ◽  
Qi Dong Li ◽  
Tai Li Sun ◽  
...  

Green cutting is one of the developing tends in the industry field. Water vapor can be introduced in metal cutting as coolant and lubricant due to its pollution-free, generating easily and unneeded disposal. Therefore, a special generating system is developed to produce suitable water vapor, and a simulation to the velocity of water vapor jet flow is presented. Then tool wear was investigated and a new capillary model is proposed, based on the experimental results. According to the boundary-layer theory, the kinetics equations of flow were solute. The velocity and flux of molecule are presented. In the capillary, the adsorption of tool-chip interface results in boundary lubricating film; the conical shape of capillary limits the depth of coolant and lubricant penetrating; and the negative press is the motility for coolant and lubricant penetrating. The study results show water vapor can decrease tool wear about 10% times and 20% comparing to cutting fluids and dry cutting, and water vapor could be a potential solution of green cutting.


2021 ◽  
Author(s):  
Hui Liu ◽  
Markus Meurer ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Cutting fluids are an important part of today's metal cutting processes, especially when machining aerospace alloys. They offer the possibility to extend tool life and improve cutting performance. However, the equipment and handling of cutting fluids also raises manufacturing costs. To reduce the negative impact of the high cost of cutting fluids, cooling systems and strategies are constantly being optimized. In most existing works, the influences of different cooling strategies on the relevant process parameters, such as tool wear, cutting forces, chip breakage, etc., are empirically investigated. Due to the limitations of experimental methods, analysis and modeling of the working mechanism has so far only been carried out at a relatively abstract level. For a better understanding of the mechanism of cutting fluids, a thermal coupled two-dimensional simulation approach for the orthogonal cutting process was developed in this work. This approach is based on the Coupled Eulerian Lagrangian (CEL) method and provides a detailed investigation of the cutting fluid’s impact on chip formation and tool temperature. For model validation, cutting tests were conducted on a broaching machine. The simulation resolved the fluid behavior in the cutting area and showed the distribution of convective cooling on the tool surface. This work demonstrates the potential of CEL based cutting fluid simulation, but also pointed out the shortcomings of this method.


2013 ◽  
Vol 274 ◽  
pp. 249-252
Author(s):  
Zhi Xin Wang ◽  
Yong Kui Han ◽  
Yong Qiu Chen

Many metal-manufacturing industries include oxyfuel gas cutting among their manufacturing processes because cutting was often used in metal-cutting processes, specifically in the large castings and forgings and the fabrication of pressure vessels. The oxyfuel gas cutting process uses controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. Previous research has demonstrated microstructure in heat-affected zone varied depending on the gas used for the combustion as well as the cutting speed (Vc) used during the process. In this research, 34CrNiMo6 steel of 900 mm in thickness and 45 carbon steel of 450 mm in thickness were cut using an oxygen-propane flame cutting process. Then, macroscopic morphology and microstructure test were done to analyze the influence of the thickness of cutting cross-section. The results showed, in general, the width of heat-affected zone increased with the thickness of cutting cross-section. Also, it was demonstrated that heat-affected zone in the bottom and top section was wider than others.


Author(s):  
Zheng-Yan Yang ◽  
Xiao-Ming Zhang ◽  
Guang-Chao Nie ◽  
Dong Zhang ◽  
Han Ding

Abstract This study proposes a comprehensive experiment-based method to determine stress field and slip lines in metal cutting process. The chip geometry and workpiece's strain and strain rate fields are determined using an in-situ imaging technique. The two-dimensional (2D) heat transfer problem for the steady-state cutting process is solved to derive the cutting temperature, and the flow stresses of work material in the main deformation zone are calculated based on the plasticity theory. Furthermore, the stress field is comprehensively determined to satisfy the stress equilibrium, friction law along the tool-chip interface, and traction-free boundary condition along the uncut chip surface. In addition, slip lines in the main deformation zone are derived according to the direction of maximum shear stress without the assumption of perfect rigid-plastic material. The proposed method is validated by comparing the cutting forces calculated based on the obtained stress field with the experimentally measurements.


Sign in / Sign up

Export Citation Format

Share Document