Modeling and control of an electronic wedge brake

Author(s):  
Kwangjin Han ◽  
Myoungjune Kim ◽  
Kunsoo Huh

The electronic wedge brake is one of the brake-by-wire systems with a self-energizing effect. It is attractive because it can produce enough braking torque with the 12-voltage system. However, the electronic wedge brake cannot be implemented unless the self-energizing effect is effectively controlled. In this study, the electronic wedge brake is modeled into dynamic equations, and a sliding mode controller is designed based on the model. The clamping force is estimated based on the simplified electronic wedge brake model and the contact point detection algorithm is also provided. The performance of the proposed controller is verified in simulations and experiments using a prototype electronic wedge brake.

2019 ◽  
Vol 57 (5) ◽  
pp. 645
Author(s):  
Nguyen Quang Hoang ◽  
Ha Anh Son

This paper concerns with modeling and control of a single flexible manipulator (SFM). The finite element method (FEM) and Lagrangian equations are exploited to establish the dynamic modeling of SFM. Firstly, the Jacobian matrix is built based on kinematic analysis. Then it is used in construction of a mass matrix for each element. The position and vibration of SFM are controlled by sliding mode controller (SMC). Its parameters are chosen by linearized equations to guarantee the stability of the system. The numerical simulation is carried out to show the efficiency of the proposed approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hamed Navabi ◽  
Soroush Sadeghnejad ◽  
Sepehr Ramezani ◽  
Jacky Baltes

A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC) implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a) regulation with one signal, (b) regulation and position control with one signal, (c) regulation and position control with two signals, and (d) FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Aijun Li ◽  
Yu Wang ◽  
Yong Guo ◽  
Changqing Wang

A finite-time blended control strategy is proposed for the reentry phase attitude control of the aerospace vehicle (ASV) based on the neural network, sliding mode control theory and control allocation. Firstly, a finite-time neural networks sliding mode controller is designed based on the attitude model of the ASV in the reentry phase to obtain the virtual control moments which can make the attitude error converge to the equilibrium point in finite time. Secondly, the desired control moments are mapped into the control commands on the aerodynamic deflectors and the reaction control system (RCS) by using the control allocation. Finally, simulation results are provided to demonstrate the effectiveness of the attitude blended control strategy proposed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hind Elaimani ◽  
Ahmed Essadki ◽  
Noureddine Elmouhi ◽  
Rachid Chakib

The modeling and control of a wind energy conversion system based on the Doubly Fed Induction Generator DFIG is the discussed theme in this paper. The purpose of this system was to control active and reactive power converted; this control is ensured thanks to the control of the two converters. The proposed control strategies are controlled by PI regulators and the sliding mode technique. In the present work a comparison of the robustness of the 2 controls of the grid side converter (GSC) during a voltage dip is shown. The simulation is carried out using the Matlab/Simulink software with a 300 kW generator.


Sign in / Sign up

Export Citation Format

Share Document