Numerical study on the steady-state heat transfer rate of nanofluid filled within square cavity in the presence of oriented magnetic field

Author(s):  
Masoud K Koopaee ◽  
Amir Omidvar ◽  
Iman Jelodari

In this paper, the steady-state natural convection in a square cavity filled with water–Al2O3 nanofluid in the presence of magnetic fields with variable inclination angles is investigated numerically. The enclosure is subjected to different side-wall temperatures while the top and bottom walls are assumed to be adiabatic. The thermal behavior of enclosure is assessed using a finite volume-based computer program. In order to ensure the accuracy of results, comparisons are also made with a previous published work. In this research, at constant magnetic field strengths, the effect of magnetic field inclination angle on the rate of heat transfer in the square cavity is investigated at the Rayleigh numbers of Ra = 103, 104, 105 and 106. In this work, the Hartmann number ranges from Ha = 0 to 120 and the solid volume fraction varies from φ = 0 to 0.06. Numerical results show that depending on the Rayleigh and Hartmann numbers, the maximum heat transfer rate may occur at magnetic field inclination angles of 45°, 60° or 90° and the effect of magnetic field inclination angle is significant at high values of Rayleigh and Hartmann numbers. It is found that addition of nano-sized solid particles causes higher heat transfer rate when Ra = 103, whereas at Rayleigh number of Ra = 106, a reverse behavior is observed. Results show that at Rayleigh numbers of Ra = 104 and 105, the effect of solid particles addition on the thermal performance of the enclosure depends on the Hartmann number. It is also shown that an increase in the inclination angle causes higher velocity within the enclosure and addition of solid particles leads to suppression of flow field.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Surabhi Nishad ◽  
Sapna Jain ◽  
Rama Bhargava

Purpose This paper aims to study the flow and heat transfer inside a wavy enclosure filled with Cu-water nanofluid under magnetic field effect by parallel implemented meshfree approach. Design/methodology/approach The simulation has been carried out for a two-dimensional model with steady, laminar and incompressible flow of the nanofluid filled inside wavy enclosure in which one of the walls is sinusoidal such that the amplitude (A = 0.15) and number of undulations (n = 2) are fixed. A uniform magnetic field B0 has been applied at an inclination angle γ. The governing equations for the transport phenomena have been solved numerically by implementing element-free Galerkin method (EFGM) with the sequential as well as parallel approach. The effect of various parameters, namely, nanoparticle volume fraction (φ), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ) has been studied on the natural convection flow of nanofluid. Findings The results are obtained in terms of average Nusselt number calculated at the cold wavy wall, streamlines and isotherms. It has been observed that the increasing value of Rayleigh number results in increased heat transfer rate while the Hartmann number retards the fluid motion. On the other hand, the magnetic field inclination angle gives rise to the heat transfer rate up to its critical value. Above this value, the heat transfer rate starts to decrease. Originality/value The implementation of the magnetic field and its inclination has provided very interesting results on heat and fluid flow which can be used in the drug delivery where nanofluids are used in many physiological problems. Another important novelty of the paper is that meshfree method (EFGM) has been used here because the domain is irregular. The results have been found to be very satisfactory. In addition, parallelization of the scheme (which has not been implemented earlier in such problems) improves the computational efficiency.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1339
Author(s):  
Yacine Khetib ◽  
Ahmad Aziz Alahmadi ◽  
Ali Alzaed ◽  
Hamidreza Azimy ◽  
Mohsen Sharifpur ◽  
...  

In this paper, the free convective heat transfer of nanofluids in a square cavity is simulated using a numerical method. The angle of the cavity could be changed in the horizontal axis from 0 to 90 degrees. The cavity is exposed under a constant magnetic field. Two opposite walls of the cavity are cold and warm, and the rest of the walls are insulated. On the hot wall, there are two fins with the same wall temperature. The equations were discretized by the finite volume method (FVM) and then solved using the SIMPLE algorithm. Three different fin configurations (straight, inclined and curved) were studied in terms of heat transfer rate and generation of entropy. According to the simulation results, the heat transfer rate was improved by tilting the fins toward the top or bottom of the cavity. At Ra = 105 and Ha = 20, the maximum heat transfer rate was achieved at a cavity inclination of 90° and 45°, respectively, for straight and curved fins. In the horizontal cavity, heat transfer rate could be improved up to 6.4% by tilting the fins and up to 4.9% by warping them. Increasing the Hartmann number from 0 to 40 reduced the Nusselt number and entropy generation by 37.9% and 33.8%, respectively.


2018 ◽  
Vol 48 (2) ◽  
pp. 50-71
Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar

Abstract This paper is intended to investigate the effects of an inclined magnetic field on the mixed convection flow in a lid-driven porous enclosure filled with nanofluid. Both the left and right vertical walls of the cavity are thermally insulated while the bottom and top horizontal walls are maintained at constant but different temperatures. The governing equations are solved numerically by using finite volume method on a uniformly staggered grid system. The computational results are obtained for various combinations of Richardson number, Darcy number, Hartmann number, inclination angle of magnetic field, and solid volume fraction. It is found that the presence of magnetic field deteriorates the fluid flow, which leads to a significant reduction in the overall heat transfer rate. The inclination angle of magnetic field plays a major role in controlling the magnetic field strength and the overall heat transfer rate is enhanced with the increase of inclination angle of magnetic field. Adding the nanoparticles in the base fluid significantly increases the overall heat transfer rate in the porous medium whether the magnetic field is considered or not.


2019 ◽  
Vol 3 (4) ◽  
pp. 263-273 ◽  
Author(s):  
Sumer Bharat Dirbude ◽  
Vivek Kumar Maurya

Melting phenomena occurs in various industrial applications, such as metal castings of turbine blades, environmental engineering, PCM-based thermal storage devices, etc. During the design of these devices, they are designed for efficient heat transfer rate. To improve the heat transfer rate, understanding of the important flow processes during the melting (and solidification) is necessary. An objective of the present work is to study the effect of natural convection and magnetic field on interface morphology and thereby on melting rate. In this work, therefore, an effect of uniform transverse magnetic field on the melting inside a cavity, filled initially with solid gallium, at various Rayleigh numbers (Ra=3×105, 6×105, and 9×105) is presented. A 2D unsteady numerical simulation, with the enthalpy-porosity formulation, is performed using ANSYS-Fluent. The magnetic field is characterized by the Hartmann number (Ha) and the results are shown for the Ha = 0, 30 and 50. The horizontal walls of the cavity are considered insulated and vertical walls are respectively considered hot and cold. It is observed that the role of natural convection during the melting is significant on the temperature distribution and solid-liquid interface. The increased magnetic field (Ha = 30 and 50) found to have a suppressing effect on the dominance of natural convection at all Rayleigh numbers (Ra=3×105, 6×105, and 9×105).


2019 ◽  
Vol 29 (4) ◽  
pp. 1466-1489 ◽  
Author(s):  
Mohammadhossein Hajiyan ◽  
Shohel Mahmud ◽  
Mohammad Biglarbegian ◽  
Hussein A. Abdullah ◽  
A. Chamkha

Purpose The purpose of this paper is to investigate the convective heat transfer of magnetic nanofluid (MNF) inside a square enclosure under uniform magnetic fields considering nonlinearity of magnetic field-dependent thermal conductivity. Design/methodology/approach The properties of the MNF (Fe3O4+kerosene) were described by polynomial functions of magnetic field-dependent thermal conductivity. The effect of the transverse magnetic field (0 < H < 105), Hartmann Number (0 < Ha < 60), Rayleigh number (10 <Ra <105) and the solid volume fraction (0 < φ < 4.7%) on the heat transfer performance inside the enclosed space was examined. Continuity, momentum and energy equations were solved using the finite element method. Findings The results show that the Nusselt number increases when the Rayleigh number increases. In contrast, the convective heat transfer rate decreases when the Hartmann number increases due to the strong magnetic field which suppresses the buoyancy force. Also, a significant improvement in the heat transfer rate is observed when the magnetic field is applied and φ = 4.7% (I = 11.90%, I = 16.73%, I = 10.07% and I = 12.70%). Research limitations/implications The present numerical study was carried out for a steady, laminar and two-dimensional flow inside the square enclosure. Also, properties of the MNF are assumed to be constant (except thermal conductivity) under magnetic field. Practical implications The results can be used in thermal storage and cooling of electronic devices such as lithium-ion batteries during charging and discharging processes. Originality/value The accuracy of results and heat transfer enhancement having magnetic field-field-dependent thermal conductivity are noticeable. The results can be used for different applications to improve the heat transfer rate and enhance the efficiency of a system.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


2017 ◽  
Vol 23 (3) ◽  
Author(s):  
Margabandhu MARIMUTHU ◽  
Sendhilnathan SECHASSALOM ◽  
Sirikanjana THONGMEE

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 258 ◽  
Author(s):  
Lioua Kolsi ◽  
Salem Algarni ◽  
Hussein A. Mohammed ◽  
Walid Hassen ◽  
Emtinene Lajnef ◽  
...  

A numerical study is performed to investigate the effects of adding Carbon Nano Tube (CNT) and applying a magnetic field in two directions (vertical and horizontal) on the 3D-thermo-capillary natural convection. The cavity is differentially heated with a free upper surface. Governing equations are solved using the finite volume method. Results are presented in term of flow structure, temperature field and rate of heat transfer. In fact, results revealed that the flow structure and heat transfer rate are considerably affected by the magnitude and the direction of the magnetic field, the presence of thermocapillary forces and by increasing nanoparticles volume fraction. In opposition, the increase of the magnetic field magnitude leads to the control the flow causing flow stabilization by merging vortexes and reducing heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document