Chattering-free adaptive fast convergent terminal sliding mode controllers for position tracking of robotic manipulators

Author(s):  
Shaoming He ◽  
Defu Lin ◽  
Jiang Wang

The paper documents a new continuous adaptive fast terminal sliding mode control approach for position tracking of robotic manipulators. Combining linear sliding mode and terminal sliding mode, a fast nonsingular terminal sliding mode manifold is presented. Considering the discontinuous property of the sign function, which is often used in traditional sliding mode controller and will result in high-freqsency chattering in the control channel, the proposed controller adopts the continuous saturation function for chattering elimination. Besides the continuous property, convergence to the origin asymptotically and in finite time can be guaranteed in theory with the proposed controller, which is quite different from traditional boundary layer technique, where only bounded motion around the sliding manifold can be ensured. For asymptotic stability, it is only required that the lumped uncertainty is bounded, but the upper bound may be unknown by virtue of the designed adaptive methodology. The obtained results are applied to the problem of position tracking for robotic manipulators. Detailed simulations with some comparisons under various conditions demonstrate the effectiveness of the proposed method.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Duoyang Li ◽  
Junzheng Wang

The position tracking problem of the electric cylinder, which has internal perturbation, external disturbance, and measurement noise of the output, is studied in this paper. A control method is proposed for achieving high tracking accuracy and tracking velocity for the wheel-legged robot application. Nonsingular fast terminal sliding mode (NFTSM) control is investigated to ensure that the system output can track the reference input in finite time. Besides, extended state observer (ESO) of the active disturbance rejection control (ADRC) is used to estimate the system lumped perturbation and compensated it in the controller based on the terminal sliding mode. This greatly reduces the chattering of the system caused by the gain of the sliding mode switch. Furthermore, tracking differentiator is designed to attenuate the output measurement noise. Simulation and experimental results illustrate that the NFTSM with ESO and TD algorithm, which is presented in this paper, has obvious superiority in the tracking precision and the antijam ability.


Sign in / Sign up

Export Citation Format

Share Document