Nonrelative sliding of spiral bevel gear mechanism based on active design of meshing line

Author(s):  
Zhen Chen ◽  
Ming Zeng

In this paper, an active design method of meshing line for a spiral bevel gear mechanism with nonrelative sliding is presented. First, the general meshing line equations for a nonrelative sliding transmission mechanism between two orthogonal axes are proposed based on the active design parameters. Then, parametric equations for contact curves on the drive and driven spiral bevel gears are deduced by coordinate transformation of the meshing line equations. Further to this, parametric equations for the tooth surface of each bevel gear are derived according to the conical spiral motion of a generatrix circle along the calculated contact curves. Finally, a set of numerical examples is presented based on two types of motion equation of the meshing points. Material prototypes are fabricated and experimentally tested to validate the kinematic performance of the functionally designed spiral bevel gear set.

2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Undercutting is a serious problem in designing spiral bevel gears with small numbers of teeth. Conditions of undercutting for spiral bevel gears vary with the manufacturing methods. Based on the theory of gearing [1], the tooth geometry of the Gleason type circular-cut spiral bevel gear is mathematically modeled. The sufficient and necessary conditions for the existence and regularity of the generated gear tooth surfaces are investigated. The conditions of undercutting for a circular-cut spiral bevel gear are defined by the sufficient conditions of the regular gear tooth surface. The derived undercutting equations can be applicable for checking the undercutting conditions of spiral bevel gears manufactured by the Gleason Duplex Method, Helical Duplex Method, Fixed Setting Method, and Modified Roll Method. An example is included to illustrate the application of the proposed undercut checking equations.


1982 ◽  
Vol 104 (4) ◽  
pp. 743-748 ◽  
Author(s):  
R. L. Huston ◽  
J. J. Coy

An analysis of the surface geometry of spiral bevel gears formed by a circular cutter is presented. The emphasis is upon determining the tooth surface principal radii of curvature of crown (flat) gears. Specific results are presented for involute, straight, and hyperbolic cutter profiles. It is shown that the geometry of circular cut spiral bevel gears is somewhat simpler than a theoretical logarithmic spiral bevel gear.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xiaoyu Sun ◽  
Yanping Liu ◽  
Yongqiang Zhao ◽  
Ming Liu

The actual contact point of a spiral bevel gear pair deviates from the theoretical contact point due to the gear deformation caused by the load. However, changes in meshing characteristics due to the migration of contact points are often ignored in previous studies on the elastohydrodynamic lubrication (EHL) analysis of spiral bevel gears. The purpose of this article is to analyze the impact of contact point migration on the results of EHL analysis. Loaded tooth contact analysis (LTCA) based on the finite element method is applied to determine the loaded contact point of the meshing tooth pair. Then, the osculating paraboloids at this point are extracted from the gear tooth surface geometry. The geometric and kinematic parameters for EHL simulation are determined according to the differential geometry theory. Numerical solutions to the Newtonian isothermal EHL of a spiral bevel gear pair at the migrated and theoretical contact points are compared to quantify the error involved in neglecting the contact point adjustment. The results show that under heavy-loaded conditions, the actual contact point of the deformed gear pair at a given pinion (gear) roll angle is different from the theoretical contact point considerably, and so do the meshing parameters. EHL analysis of spiral bevel gears under significant load using theoretical meshing parameters will result in obvious errors, especially in the prediction of film thickness.


1992 ◽  
Vol 114 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2013 ◽  
Vol 694-697 ◽  
pp. 503-506 ◽  
Author(s):  
Zheng Lin ◽  
Li Gang Yao

The mathematical model and 3D modeling of involute spiral bevel gears for nutation drive are considered. The basic tooth profile of involute is composed of involute curve and dedendum transition curve, and the equations have been established. The mathematical model of crown gear with involute profile is obtained, and then the mathematical models of the involute spiral bevel gears are developed. The tooth surface modeling of involute spiral bevel gear is proposed, and the 3D modeling of the involute spiral bevel gear for nutation drive is illustrated.


2012 ◽  
Vol 479-481 ◽  
pp. 1457-1462
Author(s):  
Hua Zhang ◽  
Xiao Yan Tie

For non-zero-modification spiral bevel gear, its machining parameters could be designed with big contact ratio by Local Synthesis. This design method could make up the shortage of low coincidence degree resulted by increasing mesh angle in the non-zero-positive transmission designing. Taking an example, according to comparing the new with conventional design simulation results, the max root tensile stress of pinion was reduced by 28.36%, and the max root compressive stress was reduced by 23.31%, and the max tooth surface contact stress was reduced by3.5%, and the root stress of gear was a bit decreased under the same load conditions. The conclusions showed that the pinion bending strength was improved obviously, and new tooth profile design and its machining parameters made gear pair possess higher life and reliability.


Author(s):  
Kaihong Zhou ◽  
Jinyuan Tang ◽  
Tao Zeng

New geometry of generating spiral bevel gear is proposed. The key idea of the new proposed geometry is that the gear tooth surface geometry can be investigated in a developed curved surface based on the planar engagement principle. It is proved that the profile curve on the back of generating cone surface is a conical involute curve. The equations of generated gear tooth surface are achieved by the conical involute curve sweeping along the tooth trace of gear. The obtained equations are explicit and independent of the machine-tool settings. This differs from previous studies. The developed theory is illustrated with numerical examples to compare with the previous method, the comparison approves that the method is possible in this way. The new method indicates that there are new solutions to the design the production of spiral bevel gear.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Wen Tang

Purpose This paper aims to establish a prediction model of stable transmission time of spiral bevel gear during a loss-of-lubrication event in helicopter transmission system. Design/methodology/approach To observe the temperature change of spiral bevel gear during working condition, a test rig of spiral bevel gear was developed according to the requirements of experiments and carried out verification experiments. Findings The prediction is verified by the test of detecting the temperature of oil pool. The main damage form of helicopter spiral bevel gears under starved lubrication is tooth surface burn. The stable running time under oil-free lubrication is mainly determined by the degree of tooth surface burn control. Originality/value The experimental data of the spiral bevel gear oil-free lubrication process are basically consistent with the simulation prediction results. The results lay a foundation for the working life design of spiral bevel gear in helicopter transmission system under starved lubrication.


Sign in / Sign up

Export Citation Format

Share Document