Novel robust controller design for load sway reduction in double-pendulum overhead cranes

Author(s):  
Huimin Ouyang ◽  
Xin Deng ◽  
Huan Xi ◽  
Jinxin Hu ◽  
Guangming Zhang ◽  
...  

It is seen that when the hook mass is larger than the load mass or the load has distributed mass property, the load sway of the crane system presents as double-pendulum effect. In this situation, crane system has two different natural frequencies so that the sway characteristic becomes more complex and greatly increases the difficulty of the dynamic performance analysis and controller design. Moreover, the rope length changes significantly affect the stability and control performance of the crane system. In order to solve the aforementioned problems, the linear dynamics of a two-dimensional overhead crane with double-pendulum effect is derived based on a disturbance observer, and is decoupled for controller design by modal analysis. Next, a state feedback controller is presented to achieve robust control performance for a given range of rope length changes. The controller gains are obtained via linear matrix inequality optimization method. Finally, numerical simulations and experimental results validate that the proposed method has superior control performance.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huimin Ouyang ◽  
Jian Wang ◽  
Guangming Zhang ◽  
Lei Mei ◽  
Xin Deng

In the double-pendulum rotary crane case, the load sway properties become more complicated so that the difficulty of design and analysis of crane control system is increased. Moreover, the change of rope length not only affects the stability of the system, but also leads to the decline of control performance. In order to solve the foregoing problems, a simple model for controller design is obtained by linearizing and decoupling the complex nonlinear model of rotary crane. Then, a linear feedback controller which can furnish robust performance is presented. Finally, numerical simulations verify the effectiveness of the proposed method by comparing with a traditional approach.


Author(s):  
Gao Ming-Zhou ◽  
Chen Xin-Yi ◽  
Han Rong ◽  
Yao Jian-Yong

To suppress airfoil flutter, a lot of control methods have been proposed, such as classical control methods and optimal control methods. However, these methods did not consider the influence of actuator faults and control delay. This paper proposes a new finite-time H∞ adaptive fault-tolerant flutter controller by radial basis function neural network technology and adaptive fault-tolerant control method, taking into account actuator faults, control delay, modeling uncertainties, and external disturbances. The theoretic section of this paper is about airfoil flutter dynamic modeling and adaptive fault-tolerant controller design. Lyapunov function and linear matrix inequality are employed to prove the stability of the proposed control method of this paper. The numeral simulation section further proves the effectiveness and robustness of the proposed control algorithm of this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jumei Wei ◽  
Rui Ma

This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2266 ◽  
Author(s):  
Fei Zhao ◽  
Jinsha Yuan ◽  
Ning Wang ◽  
Zhang Zhang ◽  
Helong Wen

The problem of secure load frequency control of smart grids is investigated in this paper. The networked data transmission within the smart grid is corrupted by stochastic deception attacks. First, a unified Load frequency control model is constructed to account for both network-induced effects and deception attacks. Second, with the Lyapunov functional method, a piecewise delay analysis is conducted to study the stability of the established model, which is of less conservativeness. Third, based on the stability analysis, a controller design method is provided in terms of linear matrix inequalities. Finally, a case study is carried out to demonstrate the derived results.


Author(s):  
Chuanfeng Wang ◽  
Donghai Li ◽  
Zheng Li ◽  
Xuezhi Jiang

An optimization method for controller parameters of a gas turbine based on probabilistic robustness was described in this paper. As is well known, gas turbines, like many other plants, are stochastic. The parameters of a plant model are often of some uncertainties because of errors in measurements, manufacturing tolerances and so on. According to model uncertainties, the probability of satisfaction for dynamic performance requirements was computed as the objective function of a genetic algorithm, which was used to optimize the parameters of controllers. A Monte Carlo experiment was applied to test the control system robustness. The advantage of the method is that the entire uncertainty parameter space can be considered for the controller design; the systems could satisfy the design requirements in maximal probability. Simulation results showed the effectiveness of the presented method in improving the robustness of the control systems for gas turbines.


Author(s):  
Daren Yu ◽  
Xiaofeng Liu ◽  
Wen Bao ◽  
Zhiqiang Xu

The multiobjective regulating and protecting control method presented here will enable improved control of multiloop switching control of an aeroengine. The approach is based on switching control theory, the switching performance objectives and the strategy are given, and a family of H∞ proportional-integral-derivative controllers was designed by using linear matrix inequality optimization algorithm. The simulation shows that using the switching control design method not only can improve the dynamic performance of the engine control system but also can guarantee the stability in some peculiar occasions.


Author(s):  
Yeming Yao ◽  
Hua Zhou ◽  
Yinglong Chen ◽  
Huayong Yang

Counterbalance valves are widely used in hydraulic deck machinery to balance the overrunning loads. However, as is well known, counterbalance circuit designed with poor choice of counterbalance valve tends to introduce instability to the system. This paper investigates the dynamic behavior of a pilot operated counterbalance valve which can operate at a flow rate about 2000L/min. A linearized stability analysis of such a hydraulic circuit which consists of a slip in cartridge, a pilot counterbalance valve and a hydraulic winch is presented. Pole-zero plots are employed to reveal the effect of the volume of control cavity, the hydraulic resistance on pilot line and counterbalance valve pilot area ratio on the stability of the system. The analysis results indicate that such a system will be unstable within the normal range of each parameter. An alternative approach that guarantees system stability by adding an accumulator on the pilot line is put forward. The approach stabilizes the pilot pressure by reducing the hydro-stiffness of pilot control cavity, thus the system can reach its stability condition. Finally, a numerical optimization method is putted forward, with the optimized parameters, the dynamic performance of considered system become better.


Author(s):  
Wenfeng Li ◽  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Xinbo Ma ◽  
Yucong Cao ◽  
...  

The vehicle active suspension has drawn considerable attention due to its superiority in improving the vehicle dynamic performance. This paper investigates the nonfragile H∞ control of delayed vehicle active suspension in a finite frequency range under nonstationary running. The control objective is to improve ride quality in a finite frequency band and ensure suspension constraints, and a quarter car model of the active suspension is established for a controller design. Then, the input delay, actuator uncertainty, and external disturbances are considered in the controller design. Moreover, a further generalization of the strict S-procedure is utilized to derive a sufficient condition in terms of linear matrix inequality (LMI) to capture performance in the concerned frequency range. Furthermore, a multi-objective controller is designed based on projection lemma in the framework of the solution of LMIs. A nonstationary road profile is established, and numerical simulations are also conducted to show the effectiveness and robustness of the proposed controller. Finally, experimental tests on a quarter-car test rig are implemented to examine the performance of the proposed controller for real applications.


Sign in / Sign up

Export Citation Format

Share Document