Experimental and numerical investigations on the acoustic characteristics and unsteady behaviors of a centrifugal compressor for fuel cell vehicles

Author(s):  
Siyue Chen ◽  
Shuguang Zuo ◽  
Kaijun Wei

Compared to other air compressors, high-speed centrifugal compressors are considered a more suitable choice for a mid-to-high-power fuel cell system due to its high-pressure ratio. As the centrifugal compressor is the most intensive noise source in the fuel cell vehicle, its acoustic characteristics become a major concern in the passenger comfort experience. Unlike the turbocharger compressor, the centrifugal compressor in a fuel cell vehicle tends to operate at near-surge conditions, which leads to flow instabilities and increases the noise level. In this paper, the acoustic characteristics of a centrifugal compressor for a fuel cell vehicle were measured on a compressor test rig covering the full range of the compressor map. The experimental results show that the lowest sound pressure level at the compressor inlet occurs in the design operating area, while the highest level occurs near the mild-surge line. Experimental work was complemented by numerical simulations. Time-averaged flow fields were compared between the near-choke and mild-surge conditions and the detached eddy simulations (DES) were performed at mild-surge conditions. Sparsity-promoting dynamic mode decomposition (SPDMD) was employed as a post-processing method to extract the flow structures associated with corresponding noise features. It was observed that the rotating stall of the impeller inducer is the main cause of the narrow-band whoosh noise near the mild-surge line. The location, number, and speed of the stall cells were identified by SPDMD in rotational and stationary frames.

2013 ◽  
Vol 27 (11) ◽  
pp. 3287-3297 ◽  
Author(s):  
Kyoung-Ku Ha ◽  
Tae-Bin Jeong ◽  
Shin-Hyoung Kang ◽  
Hyoung-Jin Kim ◽  
Kwang-Min Won ◽  
...  

2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


Author(s):  
Jeongan Choi ◽  
Rajavasanth Rajasegar ◽  
Qili Liu ◽  
Tonghun Lee ◽  
Jihyung Yoo

Abstract In this work, the growth regime of combustion instability was studied by analyzing 10 kHz OH planar laser induced fluorescence (PLIF) images through a combination of dynamic mode decomposition (DMD) and spectral proper orthogonal decomposition (SPOD) methods. Combustion instabilities were induced in a mesoscale burner array through an external speaker at an imposed perturbation frequency of 210 Hz. During the transient onset of combustion instabilities, 10 kHz OH PLIF imaging was employed to capture spatially and temporally resolved flame images. Increased acoustic perturbations prevented flame reignition in the central recirculation zone and eventually led to the flame being extinguished inwards from the outer burner array elements. Coherent modes and their growth rates were obtained from DMD spectral analyses of high-speed OH PLIF images. Positive growth rates were observed at the forcing frequency during the growth regime. Coherent structures, closely associated with thermoacoustic instability, were extracted using an appropriate SPOD filter operation to identify mode structures that correlate to physical phenomena such as shear layer instability and flame response to longitudinal acoustic forcing. Overall, a combination of DMD and SPOD was shown to be effective at analyzing the onset and propagation of combustion instabilities, particularly under transient burner operations.


2000 ◽  
Vol 123 (2) ◽  
pp. 418-428 ◽  
Author(s):  
Mark P. Wernet ◽  
Michelle M. Bright ◽  
Gary J. Skoch

Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in high-speed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


Author(s):  
Adesile Ajisafe ◽  
Midhat Talibi ◽  
Andrea Ducci ◽  
Ramanarayanan Balachandran ◽  
Nishant Parsania ◽  
...  

Abstract Liquid fuel spray characterisation is essential for understanding the mechanisms underlying fuel energy release and pollutant formation. Careful selection of operating conditions can promote flow instabilities in the fuel spray which can enhance atomisation and fuel mixing, thereby resulting in more efficient combustion. However, the inherent instabilities present in the spray could have adverse effect on the combustor dynamics. Hence, it is important to better understand the dynamical behaviour of the spray, and particularly at representative operating conditions. This work describes an experimental investigation of dynamical behaviour of pressure-swirl atomisers used in Siemens industrial gas turbine combustors, at a range of chamber pressures and fuel injection pressures, using high speed laser planar imaging. Two modal decomposition techniques — Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) — are applied and compared to assess the spray dynamics. Results indicate that both POD and DMD are able to capture periodic structures occurring in the spray at different spatial length scales. The characteristic frequencies estimated from both the methods are in good agreement with each other. Both techniques are able to identify coherent structures with variable size, shape and level of staggering, which are observed to be dependent on the pressure difference across the atomiser and the chamber pressure. The spatio-temporally resolved data and the results could be used for spray model development and validation. Furthermore, the methods employed could be applied to other fuel atomisers, and more complicated conditions involving cross flow and higher chamber temperatures.


Author(s):  
Xiaojian Li ◽  
Yijia Zhao ◽  
Zhengxian Liu ◽  
Ming Zhao

To understand the flow dynamic characteristics of a centrifugal compressor, the dynamic mode decomposition (DMD) method is introduced to decompose the complex three-dimensional flow field. Three operating conditions, peak efficiency (OP1), peak pressure ratio (OP2), and small mass flow rate (near stall, OP3) conditions, are analyzed. First, the physical interpretations of main dynamic modes at OP1 are identified. As a result, the dynamic structures captured by DMD method are closely associated with the flow characteristics. In detail, the BPF/2BPF (blade passing frequency) corresponds to the impeller–diffuser interaction, the rotor frequency (RF) represents the tip leakage flow (TLF) from leading edge, and the 4RF is related to the interaction among the downstream TLF, the secondary flow, and the wake vortex. Then, the evolution of the dynamic structures is discussed when the compressor mass flow rate consistently declines. In the impeller, the tip leakage vortex near leading edge gradually breaks down due to the high backpressure, resulting in multi-frequency vortices. The broken vortices further propagate downstream along streamwise direction and then interact with the flow structures of 4RF. As a result, the 8RF mode can be observed in the whole impeller, this mode is transformed from upstream RF and 4RF modes, respectively. On the other hand, the broken vortices show broadband peak spectrum, which is correlated to the stall inception. Therefore, the sudden boost of energy ratio of 14RF mode could be regarded as a type of earlier signal for compressor instability. In the diffuser, the flow structures are affected by the perturbation from the impeller. However, the flow in diffuser is more stable than that in impeller at OP1–OP3, since the leading modes are stable patterns of BPF/2BPF.


2014 ◽  
Vol 748 ◽  
pp. 848-878 ◽  
Author(s):  
Pramod K. Subbareddy ◽  
Matthew D. Bartkowicz ◽  
Graham V. Candler

AbstractWe study the transition of a Mach 6 laminar boundary layer due to an isolated cylindrical roughness element using large-scale direct numerical simulations (DNS). Three flow conditions, corresponding to experiments conducted at the Purdue Mach 6 quiet wind tunnel are simulated. Solutions are obtained using a high-order, low-dissipation scheme for the convection terms in the Navier–Stokes equations. The lowest Reynolds number ($Re$) case is steady, whereas the two higher $Re$ cases break down to a quasi-turbulent state. Statistics from the highest $Re$ case show the presence of a wedge of fully developed turbulent flow towards the end of the domain. The simulations do not employ forcing of any kind, apart from the roughness element itself, and the results suggest a self-sustaining mechanism that causes the flow to transition at a sufficiently large Reynolds number. Statistics, including spectra, are compared with available experimental data. Visualizations of the flow explore the dominant and dynamically significant flow structures: the upstream shock system, the horseshoe vortices formed in the upstream separated boundary layer and the shear layer that separates from the top and sides of the cylindrical roughness element. Streamwise and spanwise planes of data were used to perform a dynamic mode decomposition (DMD) (Rowley et al., J. Fluid Mech., vol. 641, 2009, pp. 115–127; Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5–28).


Sign in / Sign up

Export Citation Format

Share Document