3D transient numerical simulation of a helical roots air compressor for FCVs

Author(s):  
Huan Wei ◽  
Linfen Xing ◽  
Bingqi Wang ◽  
Jianmei Feng ◽  
Xueyuan Peng

Oil-free helical Roots air compressors which have great application potential in air circulation systems for high-power fuel cell systems, such as commercial fuel cell vehicles (FCVs), have the advantages of active adaptation, low cost, large flow rate and high reliability. In this study, a three-dimensional transient numerical simulation model of a helical Roots air compressor was established by considering all leakage clearances. In this study, hexahedral structured dynamic grids were generated in the working chamber and the rotating angle was updated at an increment of 1° to ensure the mesh quality of the entire solving domain. The accuracy of the simulation model was validated using experimental data, and the maximum deviation was less than 4.0%. Based on the simulated results, the pressure field and variation of the pressure field with the rotation angle are presented. It shows that the pressure fluctuation at the discharge side was larger than that at the suction side. The influence of various leakage clearance on the volumetric efficiency was analyzed comparatively. Additionally, the flow field characteristic of clearance was revealed. It is found that the rotor tip clearance was the major factor for the reduction of volumetric efficiency when the size was larger than 0.12 mm instead of the interlobe clearance. It is suggested that more attention should be paid to control the clearance size to ensure the performance of helical Roots air compressors.

2014 ◽  
Vol 496-500 ◽  
pp. 804-807
Author(s):  
Xian Cheng Wang ◽  
Ruo Ting Li ◽  
Xing He ◽  
Jun Biao Hu

Using simulation software, numerical simulation and plateau tests are combined to create the plateau diesel engine process simulation model. External characteristics tests of the diesel engine, plateau simulation experiments and plateau vehicle tests are combined to verify the model. The maximum deviation of the results is less 10%. The simulation model is accurate, which provides a way to study plateau environmental adaptation of diesel engines.


2014 ◽  
Vol 134 (7) ◽  
pp. 604-613 ◽  
Author(s):  
Toshiya Ohtaka ◽  
Tomo Tadokoro ◽  
Masashi Kotari ◽  
Tadashi Amakawa

1997 ◽  
Vol 36 (8-9) ◽  
pp. 397-402
Author(s):  
Yasuhiko Wada ◽  
Hiroyuki Miura ◽  
Rituo Tada ◽  
Yasuo Kodaka

We examined the possibility of improved runoff control in a porous asphalt pavement by installing beneath it an infiltration pipe with a numerical simulation model that can simulate rainfall infiltration and runoff at the porous asphalt pavement. From the results of simulations about runoff and infiltration at the porous asphalt pavement, it became clear that putting a pipe under the porous asphalt pavement had considerable effect, especially during the latter part of the rainfall.


2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4020
Author(s):  
Peng Sun ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Youlian Lu ◽  
Tianjiao Liang ◽  
...  

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.


Sign in / Sign up

Export Citation Format

Share Document