Analysis of the thermo-fluidic transport around counter-rotating tandem circular cylinders

Author(s):  
Dipankar Chatterjee ◽  
N. V. V. Krishna Chaitanya ◽  
Bittagopal Mondal

The work physically relates to the influence of thermal buoyancy on the flow and heat transfer of an incompressible fluid around two counter-rotating circular cylinders arranged in tandem configuration within an unconfined domain. Two-dimensional numerical simulations are conducted using a finite volume based computational fluid dynamics tool to explore the problem. The Reynolds number is taken as 100 with Prandtl number 0.71, keeping the non-dimensional spacing between the cylinders fixed at 1.5. The cylinder rotations are considered in the range of a dimensionless speed of 0 to 5. The upstream cylinder is rotating in the clockwise sense, whereas, the downstream one in the counter-clockwise sense. The buoyancy effect is analyzed for the Richardson number range 0 to 1. The flow is unsteady periodic characterized by vortex shedding around the stationary cylinders at the chosen value of the Reynolds number. The flow shows unsteadiness with vortex shedding initially with increasing rotational speed; however, at a critical value of the rotation, the flow becomes stabilized with suppression of vortex shedding. On the contrary, the cross thermal buoyancy effect destabilizes the flow into an unsteady periodic pattern. This complex interplay among the free stream flow, cross buoyancy, and counter-rotation produces intriguing fluid dynamic and thermal phenomena. The critical rotational speeds for the range of Richardson numbers are obtained as [Formula: see text] respectively for Ri = 0, 0.25, 0.5 and 1. A corresponding regime diagram is also constructed to depict the unsteady and steady zones of operation.

1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2018 ◽  
Vol 837 ◽  
pp. 896-915 ◽  
Author(s):  
Jessica K. Shang ◽  
H. A. Stone ◽  
A. J. Smits

Wake visualization experiments were conducted on a finite curved cylinder whose plane of curvature is aligned with the free stream. The stagnation face of the cylinder is oriented concave or convex to the flow at $230\leqslant Re_{D}\leqslant 916$, where $Re_{D}$ is the cylinder Reynolds number and the curvature is constant and ranges from a straight cylinder to a quarter-ring. While the magnitude of the local angle of incidence to the flow is the same for both orientations, the contrast in their wakes demonstrates a violation of a common approximation known as the ‘independence principle’ for curved cylinders. Vortex shedding always occurred for the convex-oriented cylinder for the Reynolds-number range investigated, along most of the cylinder span, at a constant vortex shedding angle. In contrast, a concave-oriented cylinder could exhibit multiple concurrent wake regimes along its span: two shedding regimes (oblique, normal) and two non-shedding regimes. The occurrence of these wake regimes depended on the curvature, aspect ratio and Reynolds number. In some cases, vortex shedding was entirely suppressed, particularly at higher curvatures. In the laminar wake regime, increasing the curvature or decreasing the aspect ratio restricts vortex shedding to smaller regions along the span of the cylinder. Furthermore, the local angle of incidence where vortex shedding occurs is self-similar across cylinders of the same aspect ratio and varying curvature. After the wake transitions to turbulence, the vortex shedding extends along most of the cylinder span. The difference in the wakes between the concave and convex orientations is attributed to the spanwise flow induced by the finite end conditions, which reduces the generation of spanwise vorticity and increases the incidence of non-shedding and obliquely shedding wakes for the concave cylinder.


2006 ◽  
Vol 128 (5) ◽  
pp. 1101-1105 ◽  
Author(s):  
L. Zhang ◽  
S. Balachandar

Hopf bifurcation of steady base flow and onset of vortex shedding over a transverse periodic array of circular cylinders is considered. The influence of transverse spacing on critical Reynolds number is investigated by systematically varying the gap between the cylinders from a small value to large separations. The critical Reynolds number behavior for the periodic array of circular cylinders is compared with the corresponding result for a periodic array of long rectangular cylinders considered in [Balanchandar, S., and Parker, S. J., 2002, “Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders,” Phys. Fluids, 14, pp. 3714–3732]. The differences between the two cases are interpreted in terms of differences between their wake profiles.


1969 ◽  
Vol 37 (3) ◽  
pp. 577-585 ◽  
Author(s):  
P. W. Bearman

The flow around a circular cylinder has been examined over the Reynolds number range 105 to 7·5 × 105, Reynolds number being based on cylinder diameter. Narrow-band vortex shedding has been observed up to a Reynolds number of 5·5 × 105, i.e. well into the critical régime. At this Reynolds number the Strouhal number reached the unusually high value of 0·46. Spectra of the velocity fluctuations measured in the wake are presented for several values of Reynolds number.


Author(s):  
Tomomichi Nakamura ◽  
Keisuke Nishimura ◽  
Yoshiaki Fujita ◽  
Chihiro Kohara

The authors have studied the in-flow vibration phenomena of cylinder arrays caused by cross-flow in the low Reynolds number range around Re=800. This Reynolds number range has been studied because it is the range where symmetric vortex shedding occurs. This report is our first trial to study the in-line fluidelastic vibration of cylinder arrays. In initial tests, the flow velocity was increased up to the maximum achievable level by the test equipment. However, it was found that the array’s cantilever tube supports resulted in large static tube deflections due to static drag forces. The cylinder array tube supports have therefore been replaced by thin plates supported at both ends. The cylinders are set to be flexible both in the streamwise direction and the direction transverse to the flow. The obtained results of these two patterns are also compared with previous cantilevered data. The origin of the observed vibrations whether a self-induced mechanism or vortex shedding is discussed in detail.


1992 ◽  
Vol 114 (4) ◽  
pp. 521-526 ◽  
Author(s):  
D. G. Shombert

Fluid dynamic properties of Dacron vascular grafts were studied under controlled steady-flow conditions over a Reynolds number range of 800 to 4500. Knitted and woven grafts having nominal diameters of 6 mm and 10 mm were studied. Thermal anemometry was used to measure centerline velocity at the downstream end of the graft; pressure drop across the graft was also measured. Transition from laminar flow to turbulent flow was observed, and turbulence intensity and turbulent stresses (Reynolds normal stresses) were measured in the turbulent regime. Knitted grafts were found to have greater pressure drop than the woven grafts, and one sample was found to have a critical Reynolds number (Rc) of less than one-half the value of Rc for a smooth-walled tube.


Author(s):  
Xiaofan Lou ◽  
Kaibing Zhang ◽  
Zhenhong Chen

Abstract The effect of Reynolds number (Re) on the local scour around a monopile encountering steady current was investigated experimentally in a water flume. The experiment was performed using circular cylinders with different diameters under two different freestream velocities, covering both clear-water and live-bed scours and a Reynolds number range of approximately 9,000–60,000. The time-series of the scour depth was recorded during the whole scour process and the scour pit was scanned after the scour process reached equilibrium. Results are presented in terms of the equilibrium scour depth, the time-scale of the scour process and the three-dimensional scour profile at different Reynolds numbers. For both clear-water and live-bed scours, the time history of the scour process indicate that the time-scale becomes larger as Re increases. It is also found that the normalized equilibrium scour depth, as well as the normalized scour radius, decrease with the increasing Re. An empirical equation of the equilibrium scour depth is derived as a function of Reynolds number based on the experimental results so as to better account for Re effect in the scour design.


1970 ◽  
Vol 37 ◽  
pp. 33-39
Author(s):  
ABM Toufique Hasan ◽  
Dipak Kanti Das

The interaction between an initially laminar boundary layer developed spatially on a flat plate under the influence of vortex shedding induced from a rotating circular cylinder has been simulated numerically. The rotational speed of the cylinder is varied to generate the vortex shedding of different intensities. Also the flat plate is kept at different positions from the cylinder. Due to asymmetry in the flow field, the present problem is governed by unsteady Navier-Stokes equations which are simulated numerically by finite element method. Computations are carried out for low Reynolds number range up to 1000. Instantaneous development of the flow field, unsteady boundary layer integral parameters, and wall skin friction are presented on different streamwise locations over the plate. From the computation, it is observed that the vortex shedding substantially affects the boundary layer development. The disturbed displacement and momentum thicknesses of the plate increase up to 1.6 times and 2.6 times of the undisturbed flow, respectively. Also the plate shape factor approaches a value of 1.5 which is typical for turbulent flow. This interaction strongly depends on the rotating speed of the cylinder, the relative positions of the cylinder and the plate and also on Reynolds number of the flow. Keywords: Vortex shedding, finite element, boundary layer, wall skin friction.doi:10.3329/jme.v37i0.817Journal of Mechanical Engineering Vol.37 June 2007, pp.33-39


1982 ◽  
Vol 123 ◽  
pp. 363-378 ◽  
Author(s):  
Y. Nakamura ◽  
Y. Tomonari

Measurements of’ the mean-pressure distribution and the Strouhal number on a smooth circular cylinder, circular cylinders with distributed roughness, and circular cylinders with narrow roughness strips were made over a Reynolds-number range 4.0 × l04 to 1.7 × l06 in a uniform flow. A successful high-Reynolds-number (trans- critical) simulation for a smooth circular cylinder is obtained using a smooth circular cylinder with roughness strips. High-Reynolds-number simulation can only be obtained by roughness strips and not by distributed roughness. A similarity parameter correlating the pressure distributions on circular cylinders with distributed roughness in the supercritical range is presented. The same parameter can also be applicable to the drag coefficients of spheres with distributed roughness.


1977 ◽  
Vol 99 (3) ◽  
pp. 495-501 ◽  
Author(s):  
R. King

Yawed cylinders are cylinders inclined forward or backwards in the plane of the flowing fluid. They are used in many practical situations such as braced frame members and raked marine piles. This paper describes an examination of three aspects of the yawed cylinder-fluid interactions over a range of yaw angles ±45° from the vertical for the Reynolds number range 2,000 < Re < 20,000. viz. 1. Establishment of the stability criteria of vortex-excited oscillations. 2. Measurement of ‘steady’ drag forces and equivalent drag coefficients. 3. Visualization of the local flow over stationary and oscillating cylinder. After a brief review of previous experimental and theoretical work, the results of the three items listed above are presented and discussed. Vortex-excited oscillations were recorded in the in-line and crossflow directions throughout the range of yaw angles and the results of items 2, 3 were used to justify the forms of the stability criteria proposed for these oscillations.


Sign in / Sign up

Export Citation Format

Share Document